1.	Position vector of a p	ooint P(a, b, c) in xz-plane is gi	ven by	
	(a) $\mathbf{r} = a\mathbf{i} + b\mathbf{j}$	(b) $\mathbf{r} = \mathbf{a} \mathbf{i} + \mathbf{c} \mathbf{k}$	(c) $\mathbf{r} = \mathbf{b} \mathbf{j} + \mathbf{c} \mathbf{k}$	(d) $\mathbf{r} = a\mathbf{i} + b\mathbf{y} + c\mathbf{k}$
2.	Which of the followi	ng is a vector quantity?		
	(a) torque	(b) speed	(c) density	(d) work
3.	Scalar product of vec	etor \mathbf{A} is equal to		
	(a) A²	(b) zero	(c) one	(d) i.j
4.	If $\mathbf{A} \times \mathbf{B} = 0$, then it c	can be concluded that the two	vectors are	
	(a) unit vectors (b) p	perpendicular to each other	(c) parallel to each ot	her (d) position vectors
5.	The magnitude of ($\hat{j}x\hat{k}$) is		
	(a) 1	(b) -1	(c) zero	(d) 2 <i>i</i>
6.	The angle between X	-axis, Y-axis and Z-axis is		
	(a) 45 ⁰	(b) 60 ⁰	(c) 75 ⁰	(d) 90 ⁰
7.	The magnitude of rec	ctangular components of a vect	or are equal if its angle	with x-axis is
	(a) 45°	(b) 30 ⁰	(c) 60 ⁰	(d) 90 ⁰
8.	When a vector is mul	ltiplied by a negative number t	hen its	
	(a) direction change	s (b) direction remains same	(c) direction reverse	es (d) magnitude must change
9.	If x-component of a v	vector is positive and y-compo	nent is negative, the ve	ctor lies in
	(a) 1 st quadrant	(b) 2 nd quadrant	(c) 3 rd quadrant	(d) 4 th quadrant
10.	The magnitude of cro	oss product of two vectors is m	aximum, when angle b	/w them is
	(a) 0^0	(b) 45 ⁰	(c) 90 ⁰	(d) 180 ⁰
11.	If $A = 2i + j + 2k$, the second sec	hen A is equal to		
	(a) zero	(b) 3	(c) 9	(d) 5
12.	If magnitude of a+b	= magnitude of a-b , then angle	e b/w a and b	
	(a) 0 ⁰	(b) 45⁰	(c) 90 ⁰	(d) 180 ⁰
13.	If line of action of for	rce passes through axis of rota	tion of origin then its to	orque is
	(a) zero	(b) maximum	(c) minimum	(d) infinite
14.	The magnitude of 2/3	3 i - 1/3 j + 2/3 k is		
	(a) zero	(b) 1	(c) 3	(d) 1/3
15.	Which of the followi	ng is a vector quantity?		
	(a) power	(b) inertia	(c) entropy	(d) tension
16.	Which pair of follow	ing forces can give magnitude	of resultant force equal	to zero?
	(a) 2N & 2N	(b) 1N & 4N	(c) 2N & 5N	(d) 1N & 2N
17.	The resultant of two	forces 30 N and 40 N acting at	an angle of 90 ⁰ with e	each other, is
	(a) 30 N	(b) 40 N	(c) 50 N	(d) 70 N
18.	The scalar product of	f two vectors is maximum, whe	en they are	
	(a) parallel	(b) perpendicular	(c) anti parallel	(d) at an angle of 60°
19.	When two vectors are	e anti-parallel, the angle betwe	en them is	
	(a) 0 ⁰	(b) 270 ⁰	(c) 90 ⁰	(d) 180⁰
20.	The magnitude of cro	oss product and dot product of	two vectors are equal, t	the angle b/w vectors is
	(a) zero	(b) 45⁰	(c) 90 ⁰	(d) 180 ⁰

21.	The magnitude of a u	init vector is		
	(a) zero	(b) 1	(c) 2	(d) 3
22.	Which of the followi	ng is the example of a vector of	quantity?	
	(a) torque	(b) speed	(c) density	(d) work
23.	The resultant of two	forces of 5 N each, acting on a	n object of mass 5 kg i	n opposite direction is
	a. zero	(b) 5 N	(c) 10 N	(d) 15 N
24.	Head to tail rule is us	ed for		
	(a) Addition of vecto	ors (b) subtraction of vectors	(c) multiplication of v	ectors (d) division of vectors
25.	If x-component of a v	vector is negative and y-compo	onent is positive, the ve	ctor lies in
	(a) 1 st quadrant	(b) 2 nd quadrant	(c) 3 rd quadrant	(d) 4^{th} quadrant
26.	If both x and y compo	onents of a vector are negative.	, the proper angle of the	e vector is calculated as
	(a) $\theta = 180 + \varphi$	(b) θ = 180 - φ	(c) $\theta = \phi$	(d) θ = 360 - φ
27.	The cross product of	two vectors will be maximum	at an angle of	
	(a) 0^0	(b) 60°	(c) 90 ⁰	(d) 180 ⁰
28.	The scalar product of	two vectors A and B will equa	al to zero if the angle b	etween them is
	a. 0 ⁰	b. 90 ⁰	c. 120 ⁰	d. 180 ⁰
29.	The magnitude of res	ultant is 5 units. The magnitud	e of one of its rectangu	lar component is 4 units. The
	magnitude of other co	omponent is equal to		
	(a) 5	(b) 4	(c) 3	(d) 2
30.	Reverse process of ve	ectors addition is called		
	(a) subtraction of vect	tors (b) resolution of vect	tor (c) obtaining un	it vector (d) product of vectors
31.	Which of the following	ng is a vector quantity?		
	(a) power	(b) inertia	(c) mass	(d) acceleration
32.	A force of 10 N is act	ing along x-axis, its componen	nt along y-axis is	
	(a) 10 N	(b) 5 N	(c) 8.66 N	(d) zero
33.	Mathematically unit v	vector is given by		
	(a) $\hat{\mathbf{A}} = \mathbf{A}/\mathbf{A}$	(b) $\hat{\mathbf{A}} = \mathbf{A} + \mathbf{A}$	(c) $\hat{\mathbf{A}} = \mathbf{A}/\mathbf{A}$	$(\mathbf{d})\hat{\mathbf{A}}=\mathbf{A}.\mathbf{A}$
34.	The S.I. unit for inten	sity of light is;		
	a. radian	b. mole	c. candela	d. ampere
35.	The number of base u	inits are;		
_	a. Seven	b. Two	c. Three	d. Four
36.	Two forces of magnit	ude F act perpendicular to each	h other. The angle mad	e by resultant force with the
	horizontal will be			
	a. 90 ⁰	b. 60 ⁰	c. 45 ⁰	d. 30 ^o
37.	S.I unit of solid angle	is		
	a. radian	b. ste-radian	c. candela	d. mole
38.	The first digit droppe	d is less than 5, the last digit re	etained is;	
	a. Decreased by one	b. Increased by one	c. unchanged	d. All of these
39.	The scalar product of	two vectors A and B will be r	naximum if the angle b	between them is
	a. 0 ⁰	b. 90 ⁰	c. 120 ⁰	d. 180 ⁰
40.	The magnitude of res	ultant is 5 units. The magnitud	e of one of its rectangu	lar component is 3 units. The
	magnitude of other co	omponent is equal to		
	(a) 5	(b) 4	(c) 3	(d) 2
41.	The dimension of for	ce		
	(a) $[ML^2T^{-2}]$	(b) $[ML^{-2}T^{-2}]$	(c) [MLT ⁻¹]	(d) $[MLT^{-2}]$

42.	The SI unit of press	ure in terms of base units are		
	a. kg m $^{-1}$ s $^{-2}$	b. kg m ⁻¹ s ⁻³	c. kg m s ⁻²	d. kg m ⁻²
43	The significant figu	res in 0.0482 are	U	C
	a. 2	b. 3	c. 4	d. 5
44.	The dimension of m	nodulus of elasticity (E) is		
	• IMI -1T-21	b $[MI T^{-2}]$	a [M] -1TI	$4 \text{ [MI } -2\text{T}^{-2}\text{I}$
15	a. [WIL I]	U. [MLI]	C. [IVIL I]	u. [ML I]
45.	a Solid State Physi	ics b Mechanics	- Particle Physics	d Nuclear Physics
	a. Sonu State I nys	its 0. Mechanics	c. Faiticle Fliysles	d. Nuclear Fliysics
46.	Resultant of two for	rces 4 N and 3N inclined at an a	angle of 90 ⁰	
	a. 1 N	b. 2 N	c. 4 N	d. 5 N
47.	Two forces of 60 N	and 80 N acting on a body opp	osite of each other are	added. Their resultant is
	a. 20 N	b. 140 N	c. 4800 N	d. cannot be added
48.	The cross product j	x i is equal to		
	a. k	bk	c. 1	d. zero
49.	Magnitude of cross	product of two parallel vectors	s a and b is equal to	
	a. ab cos 0	b. 0	c. 2 ab	d. ab/2
50.	The base units for p	ower are;		
	a. kg m ² s ⁻²	b. kg m s ⁻²	c. kg m ⁻¹ s ⁻³	d. kg m ² s ⁻³
51	The number of supr	plementary units are:	••••••••••••••••••••••••••••••••••••••	
011	a. Seven	b. Two	c. Three	d. Four
52	Physics is a quantita	ative science based on primarily	v on:	
02.	a fundamental quar	atities b definitions	c. description	d Experiments and measurements
53	The error produced	due to faulty apparatus is calle	d.	d. Experiments and measurements
55.	a. Random error	h. Systematic error	c. Personal error	d None of these
~ .			c. i cisonai citor	
54.	The number of sign:	ificant figures of $8.07 \times 10^{\circ}$ are	e;	
	a. Three	b. Four	c. Five	d. Seven
55.	In rotational motion	a, the analogy of force is	20 <u>0</u> 0 0 0 0 0	
	a. Rotational inert	ia b. moment of inertia	c. Torque	d. Acceleration
56.	The SI unit of press	ure 1s	/7A338	
	a. watt	b. joule	c. pascal	d. newton
57.	The significant figu	res in 0.04820 are	11.	
	a. 2	b. 3	c. 4	d. 5
58.	The scientific notati	ion of a number 0.0056 is		
	a. 5.6x10 ⁻²	b. 5.6x10 ⁻³	c. 5.6	d. 56
59.	Physical quantities a	are divided into		
	(a) two categories	(b) three categories	(c) four categories	(d) five categories
60.	The computer chips	are made from		
	a. Germanium	b. Silicon	c. Sand	d. Aluminum
61.	A precise measurem	nent is one which has		
	a. Zero precision	b. absolute precision	c. Maximum precision	n d. less precision
62.	The first digit dropp	bed is more than 5, the last digit	t retained is;	-
	a. Decreased by one	b. Increased by one	c. unchanged	d. All of these
63.	Magnitude of cross	product of two perpendicular	vectors a and b is equal	l to
	a. ab $\cos\theta$	b. 0	c. ab sinθ	d. ab
64.	The dimension of w	vork is		

	a. [ML ⁻² T ⁻²]	b. [MLT ⁻²]	c. $[ML^2T^{-3}]$	d. None of these
65.	If $x_1 = (10.5 \pm 0.1)$ cm	and $x_2 = (26.8 \pm 0.1)$ cm then 2	x2-x1 is given by	
	a. (16.3+0.1) cm	b. (16.3±0.2) cm	c. (16.1±0) cm	d. (16.3±0) cm
66.	The sum of three num	pers, 2.7543, 4.10 and 1.273 u	p to correct decimal pla	ace is
	a. 8.12	b. 8.13	c. 8.1273	d. 8.127
67.	The solid angle subten	ded at the centre of a sphere is	8	
	2π	b. 4π	с. 6π	d. 3 π

Best Notes for PAF Initial Tests of Commissioned Officers

1.	The horizontal range of projectile at 55 ⁰ with horizontal is same at an angle			
	a. 25 ⁰	b. 35⁰	c. 45 ⁰	d. 65 ⁰
2.	Which of the followi	ng quantity can be calculated f	from the velocity time graph:	
	a. Acceleration	b. Velocity	c. Impulse	d. Change of time
3.	As a rocket moves up	pward, its acceleration		
	a. increases	b. decreases	c. remains constant	d. can't be calculated
4.	The time rate of char	nge in momentum of an isolated	d system is also called	
	a. force	b. acceleration	c. torque	d. impulse
5.	The property of a boo	dy due to which it oppose the c	hange in its state is called	
	a. momentum	b. torque	c. weight	d. inertia
6.	When velocity time	graph is a straight line, then		
	a. Velocity is consta	ant b. acceleration is unifor	m c. velocity is variable	d. acceleration is zero
7.	Acceleration is alway	ys produced in the direction of		
	a. velocity	b. torque	c. angular momentum	d. force
8.	The distance covere	d by a freely falling body is 2 s	will be	
	a. 4.9 m	b. 19.6 m	c. 9.8 m	d. 39.2 s
9.	Laws of motion are v	valid in a frame of reference wh	nich is	
	a. inertial	b. non-inertial	c. both inertial & non inertial	d. none of these
10.	In projectile motion,	vertical component of the velo	city	
	a. remains constant	b. decreases	c. increases d. cl	hanges continuously
11.	Rate of change of mo	omentum is equal to		
	a. mass	b. impulse	c. force	d. none of these
12.	The range of projecti	le is maximum at an angle of		
	a. zero degree	b. 30 ^o	c. 45 ⁰	d. 60 ⁰
13.	The horizontal range	and height of projectile are eq	ual at an angle of	
	a. 75 ⁰	b. 76 ⁰	c. 77 ⁰	d. 78 ⁰
14.	The range of the proj	ectile is directly proportional to	0	
	a. $\sin^2\theta$	b. sin 2θ	c. $\sin \theta$	d. $2\sin\theta$
15.	The acceleration of p	projectile at the highest point is		
	a. zero	b. 9.8 ms ⁻²	c. 19.6 ms ⁻²	d. 32.2 ms ⁻²
16.	Newton's first law de	efines		
	a. force	b. speed	c. acceleration	d. displacement

17.	A 10 N force is app	lied on a body which produce	es acceleration of 1 ms ⁻² in it	, mass of the body is
	a. 10 kg	b. 1 kg	c. 5 kg	d. 20 kg
18.	An object have mas	s 10 kg moving with accelera	tion 5 ms ⁻² . The force applie	ed on it is
	a. 1 N	b. 10 N	c. 15 N	d. 50 N
19.	When a bullet is fire	ed by a gun, recoil is produced	d in	
	a. gun	b. bullet c. b	oth gun and bullet d.	no recoil is produced
20.	A 5 kg object is fall	ing freely, the apparent weigh	nt of the object is	
	a. 5 N	b. 9.8 N	c. 19.6 N	d. zero
21.	The motion of a roc	ket is in accordance with law	of conservation of	
	a. linear momentu	m b. energy	c. mass	d. angular momentum
22.	Vertical height cove	ered by a projectile when it is	thrown horizontally from cer	tain height if it takes 2 seconds
	to hit the ground.			
	a. 4.9 m	b. 19.6 m	c. 39.2 m	d. 44.1 m
23.	The horizontal com	ponent of a projectile moving	with an initial velocity of 50	0 m s^{-1} at angle of 60° with the
	X-axis is equal to			
	a. 150 m s ⁻¹	b. 250 ms ⁻¹	c. 0 ms ⁻¹	d. 625 ms^{-1}
24.	The area under the v	velocity time graph is equal to		
	a. Acceleration	b. Velocity	c. distance traveled	d. Change of time
25.	The of the burnt gas	es ejected from the back of ro	ocket is	0
	a. 3000 ms ⁻¹	b. 3500 ms ⁻¹	c. 4000 ms ⁻¹	d. 4500 ms ⁻¹
26.	The horizontal com	ponent of a projectile through	out its motion	
	a. remains constant	t b. increases	c. becomes zero	d. decreases
27.	When the body is m	oving with constant accelerat	ion then instantaneous accele	eration is equal to
	a. Displacement	b. Average acceleration	c. Average velocity	d. None of these
28.	The total change in	momentum of an isolated syst	tem is	
	a. maximum	b. minimum	c. zero	d. None of these
29.	When heavy body c	ollides elastically with light b	ody at rest, velocity of light	body after collision
	a. remains same	b. becomes double	c. same but in opposite d	lirection d. becomes zero
30.	A neutron is in head	-on elastic collision with a sta	ationary nitrogen nucleus. Th	e mass of a nitrogen nucleus
	is 14 times greater t	han the mass of a neutron. Th	ne velocity of neutron after c	ollision is
	(a) Zero.		-6.A.A.	
	(b) less in mag	nitude than its initial velocity.		
	(c) less in mag	nitude than the final velocity of	of nitrogen atom.	
	(d) equal in ma	agnitude to its initial velocity	y but in the opposite direction	on.
31.	Which of the follow	wing statements relating to Ne	ewton's third law is not corre	ct?
	(a) The two for	ces must be of same type.		
	(b) The two for	ces must act on different bodi	es.	
	(c) The two for	ces are always opposite in dir	rection.	
	(d) The two for	rces are equal and opposite	so the bodies are in equilibi	rium.
32.	The shortest distance	ce between two points is called	d	
22	a. speed	b. distance	c. acceleration	d. displacement
33.	The slope of the ve	b. Velocity	c Distance covered	d Change of time
34	When the values of	average and instantaneous ve	elocities are equal then body	is said to be moving with
51.	a. uniform speed	b. uniform acceleration	c. uniform velocity	d. average velocity
35.	When a massive bo	dy collides elastically with a	light stationary body, velocit	y of massive body after collision
	a. massive body co	mes to rest b. becomes do	uble c. same but in oppo	site direction d. remains same
_				

36.	Pull of earth on a ma	ass of 20 kg on the surface of	earth is	
	a. 19.6 N	b. 20 N	c. 196 N	d. 1960 N
37.	Inertia of a body is r	neasured in terms of		
	a. its mass	b. its weight	c. its force	d. its velocity
38.	To cover maximum l	horizontal distance, a long jum	per must jump at an angle of	
	a. 20 ⁰	b. 30 ⁰	c. 45 ⁰	d. 60 ⁰
39.	A collision in which	K.E of a system remains cons	tant is called	
	a. inelastic collision	b. elastic collision	c. both elastic and inelastic	d. none of these
40.	Before launch of a ro	ocket, mass of fuel of rocket co	onsist of approximately	
	a. 40 % of mass of re	ocket b. 50 % of mass of ro	cket c. 60 % of mass of rock	tet d. 80 % of mass of rocket
41.	A particle collides ela	astically with another particle	of same mass at rest, the velocit	ity of incident particle
	a. becomes double	b. becomes zero	c. remains same	d. same but opposite
42.	A projectile has initia	l velocity 9.8 m/s. The maxim	um height gained by the project	ctile is equal to
	a. 4.9 m	b. 9.8 m	c. 19.6 m	d. zero
43.	For which pair of ang	le, the horizontal range of a pr	ojectile is equal	
	a 30 ⁰ 8 60 ⁰	$h 20^{\circ} & 20^{\circ}$	0 40 ⁰ & 60 ⁰	$d 30^{\circ} & 00^{\circ}$
11	Acceleration of a bod	U. 20 & 30	$c.40 \approx 00$	u. 30 & 90
44.		ry moving with uniform veloci	it y 18	
	a. 9.8 m/s ²	b. zero	c. not zero	d. variable
45.	According to Newton	i's second law of motion, the r	nagnitude of force is directly p	proportional to
1.5	a. velocity	b. acceleration	c. inertia	d. mass
46.	The dimension of for	ce are $1 - 1 + 1 = 2$	N/TT-?	1 1 17 25
47	a. MLT ²	b. M ² LT ²	c. MT ²	d. ML ² T
47.	The discuss used by a	an athlete has a mass of 1 kg. I	ts weight in Newton is	
40	a. 100 N	D. 98 N	c. 80 N	d. 9.8 N
48.	when a person reach	es the top of a high mountain	a his mass dasmassas	d his weight dightly doorgoog
40	a. ms mass increases	b. ms weight increases	c. ms mass decreases	a. his weight slightly decreases
49.	Acceleration of two c	no c different for different	owed to fail freely is	for different objects
50	In an elastic collision	of two bodies baying equal m		or unrerent objects
50.	a K E is lost	b momentum is lost	asses DE is lost d KE and r	nomentum are conserved
51	Range of projectile is	0. momentum is lost c.		nomentum are conserved
511		1 2 2	2	2
	a. $2 v_1 \sin\theta/g$	b. $2 v_1^2 \sin\theta/g$	c. $v_1^2 \sin\theta/g$	d. $v_i^- \sin 2\theta/g$
52.	Horizontal range of p	rojectile is related with maxim	num range according to the rela	ation
	a. $R = Rmax \sin\theta$	b. $R = Rmax \sin 2\theta/g$	c. $Rmax = R \sin 2\theta/g$	d. $\mathbf{R} = \mathbf{R} \max \sin 2\theta$
53.	The horizontal range	of projectile at 30 ⁰ with horiz	ontal is same at an angle of	
	a. 40 ⁰	b. 45°	c. 60 ⁰	d. 90 ⁰
54.	Water flows out from	a pipe at 3 kg/s and its velocit	ty changes from 5m/s to zero o	on striking the wall.
	The force due to w	vater flows is		C
	a. 3 N	b. 5 N	c. 10 N	d. 15 N
55.	S.I. units of impulse i	S		
	a. kg m	b. N s	c. N	d. kg m s
56.	The unit of impulse is	s same as that of		-
	a. force	b. weight	c. momentum	d. acceleration
57.	A cricket ball is hit so	o that it travels to reach the ma	ximum height 44m, its initial	velocity is
	a. 10 m/s	b. 15 m/s	c. 29.4 m/s	d. 12.2 m/s
Fo	r more past paper	rs of Army, Navy and PA	F visit website, https://w	ww.pakshaheens.com/

1.	The S.I unit of power				
	(a) joule (I	b) watt	(c) newton	(d) d	yne
2.	Photocell converts light ener	rgy into			
	(a) Chemical energy (I	b) Electrical energy	(c) potential energy	(d) h	eat energy
3.	Energy stored in a winding s	spring is			
	(a) Elastic potential ener	cgy (b) Electrical energy	(c) Solar energy	(d) K	ζ.Ε
4.	The S.I unite of work is				
	(a) joule (b	o) newton	(c) BTU	(d) d	yne
5.	The escape velocity on the s	surface of earth is given by	formula.		
	(a) \sqrt{gR} (b) $\sqrt{2gR}$	(c) $\sqrt{2rR}$	(d)	2gR
6.	If the direction of forces is	s perpendicular to the direct	ion of motion of a body,	the w	ork done is
	(a) Minimum	(b) Maximum	(c) Zero		(d) Infinity
7.	The dot product of force a	and velocity is called			
	(a) Power	(b) Work	(c) Energy		(d) force
8.	The work will be negative	e when angle b/w force and	displacement		
	(a) 45^{0}	(b) 90^{0}	$(a) 180^{0}$		00 (b)
0	(a) 45 Work done in a gravitatic	(U) 30	(C) 100		(u) 0
9.	(a) Zoro	(b) Maximum	(a) positivo		(d) Nagativa
10	(a) Zero The source of tidal energy		(c) positive		(u) Negative
10.	(a) Pull of ourth	(b) pull of sup	(a) pull of moo	n	(d) None of these
11	(a) Full of Calul The area under force dian	(b) puil of suil	(c) puil of moo	,11	(d) None of these.
11.	(a) work done	(b) nower	(a) forma		(d) momentum
10	(a) work uone The force which connet d	(U) power	(c) force		(d) momentum
12.	(a) alastria fores	(b) frictional forma	(a) contrinctal	forma	(d) anavitational forma
12	(a) electric force	(b) Inctional force	(c) centripetar	lorce	(d) gravitational lorce
15.	K.E can be defined as the	(b) forme and valuation	(a) ava momentu	mand	volgeity (d) none of these
11	(a) momentum and force	(b) force and velocity	(c) avg. momentu	m and	(d) none of these
14.	15 joules of work is done	(h) 2	(a) 1/2 matt		(d) 20
15	(a) 45 Wall	(D) 5 wall	(c) 1/3 wall		(d) 20 walt
15.	(a) becomes double	(h) remains some	(a) have may four time	a	(d) becomes helf
16	(a) becomes double	(D) remains same	(c) becomes four time	5	(d) becomes nam
10.	(a) 7.0 km/s	(b) 11 lrm/a	(a) 11.7 lm/a		(d) infinite
17	(a) 7.9 KIII/S		(C) 11.7 KIII/S		(d) minute
17.	(a) 0.26 MI	(b) 2 6 MI	(a) 26 MI		(d) 260 MI
10	(a) 0.50 MJ	(D) 3.0 IVIJ	(C) 50 MJ		(d) 300 MJ
10.		(h) work			
10	(a) energy	(D) WORK	(c) power	ware h	(d) momentum
19.	As we move a body up at	(b) regitive	(a) Terre	ways c	(d) infinity
20	(a) negative The K \mathbf{E} of a hadro of max	(b) positive			(d) minuty
20.	The K.E of a body of mas $(-)$ 1 T	$ss \ 2 \ kg and momentum \ 2 \ N$			
01	$(a) \mathbf{I} \mathbf{J}$	(b) 2 J	(C) 3 J		(a) 4 J
21.	Geysers usually occur in	1			1 11 - 6 /1
<u></u>	a. cold region	D. volcanic region	c. mild hot regi	on	a. All of these
22.	when speed of a body is	aoubled its			
	a. K.E is doubled	b. P.E is doubled	c. Momentum is doub	oled	d. None of these

23.	An object of mass	3 kg placed on the surface of tal	ble 2 m high. It is moved on the	surface by 4 m the change in
	P.E. is			
	a. Zero	b. 9.8 J	c. 19.6 J	d. 329 J
24.	The work done by	a variable force in moving an ob-	pject between two points is equa	al to area under
	a. F vs d curve	b. Fcos0 vs d curve	c. Fsin θ vs d curve	d. zero
25.	The tidal energy is	s due to the pull of		
	(a) Sun	(b) earth	(c) moon	(d) All of these
26.	The work done wi	ll be maximum if the angle betw	een force ${f F}$ and displacement ${f d}$	
	(a) 45°	(b) 90°	(c) 180°	(d) 0^0
27.	The dimensions of	f work are		
	(a) MI T ⁻¹	(b) MI T^{-2}	(a) MI $^{2}T^{-2}$	
20	(a) NIL I The field in which	(b) ML1	(c) ML I	(d) MLT
20.	(a) Electric field	(b) magnetic field	(a) gravitational field	(d) conservative field
20	(a) Electric field	of 2 kg is raised vertically throw	(c) gravitational field	(u) conservative netu
29.	(a) 38.2 I	(b) 30 2 I	(c) 40 I	(d) 302 1 I
30	The ability or can	acity to do work is called	(0) +0 3	(d) 572.1 5
50.	(a) force	(b) power	(c) kinetic energy	(d) energy
31	The energy consu	med by 60 watt bulb in 2 second	s is	(u) energy
511	(a) 120 J	(b) 60 J	(c) 30 I	(d) 0.02 J
32.	The value of accel	eration due to gravity at center o	f earth is	(d) 01020
	(a) 7 ero	(b) 9.8 m/s^2	(c) infinity	(d) Maximum
33.	Work done by the	frictional force is	(c) minity	
	(a) 0.8 m/s^2	(b) Zaro	(a) Nogotivo	(d) positivo
34	The kinetic energy	v of a 50 gm bullet moving at a s	speed of 500 m/s is	(u) positive
51	(a) 2500 J	(b) 1250 J	(c) 25000 J	(d) None of these
35.	All the frictional f	orces are	(0) 200000	
	(a) Conservative f	orces (b) Non-Conservat	ive (c) Constant forces	(d) None of these.
36.	Kilowatt hour is u	nit of		
	(a) power	(b) work	(c) force	(d) momentum
37.	1 kWh energy is e	qual to		
	(a) 3 6 I	(b) 3.6×10^5 I	(c) 3.6×10^4 J	(d) 3.6 MI
38	(a) 5.0 J The energy stored	by the water in dam is	(c) 5.0x10 3	(u) 5.0 WI
50.	(a) heat energy	(b) PE	(c) K F	(d) nuclear energy
39	The work done by	a force 100 N applied parallel to	direction of motion upto 20 m	is
57.	(a) 10 J	(b) 20 J	(c) 200 J	(d) 2000 J
40.	A 60 kg man runs	up a long stairs in 5 seconds. If l	he covers a height of 5 m and a	horizontal distance of 10 m.
	his power	1	-61	
	a. 490 watt	b. 250 watt	c. 588 watt	d. 2450 watt
41.	The intensity of th	e solar energy reaching the earth	's surface is about:	
	$a 1.4 \text{ KWm}^{-2}$	$h 1.6 \text{ KWm}^{-2}$	$1.8 \mathrm{KWm^{-2}}$	$d \perp 0 $ KWm ⁻²
12	The dimension rat	in of work to power is	C. 1.6 KWIII	
42.		h T	c I	d KWH
43	a. J The ratio between	orbital and escape velocities are	V. L	u. 1X 17 11
13.	a. 1	b. 2	$c\sqrt{2}$	d. <u>1</u>
11	Which one is the	higgost unit of anarow?	0. y L	$\sqrt{2}$
44.	a. Erg	b. joule	c. watt hour	d. Kilowatt hour
F	or more past par	pers of Army. Navy and P	AF visit website, https://w	ww.pakshaheens.com/
-				

45.	A stone is thrown up from the surface of the earth, when it reaches at maximum height, its K.E. is					
	a. mgh	b. $\frac{1}{2}$ mv ²	c. zero	d. 2 mgh		
46.	The force which can	nnot do work on the body on wh	ich it acts is called			
	a. electric force	b. frictional force	c. gravitational force	d. centripetal force		
47.	9 joules of work is	done in 3sec then power is				
	a. 6 watt	b. 3 watt	c. 18 watt	d. 2 watt		
48.	The value of solar co	onstant is	_	-		
	a. 1.4 KWm ⁻²	b. 1.6 KWm ⁻²	c. $1.8 \mathrm{KWm}^{-2}$	d.1.0 KWm ⁻²		
49.	When sun light enter	rs into atmosphere its total energ	y reduces due to			
	a. reflection from d	lust particles	b. absorption from dust partic	cles		
	c. scattering from du	ust particles	d. All of these			
50.	Absolute P.E of an o	object at infinite height w.r.t. ear	th is taken as			
	a. negative	b. zero	c. minimum	d. virtual		
51.	The sources of geot	hermal energy is / are				
	a. radioactive decay	b. residual heat of earth	c. compression of materials	d. All of these		
52.	The most common method for conversion of biomass into fuel is/are					
	a. direct combustion	b. fermentation	c. both a & b	d. none of these		
53.	The strong water wa	aves on the surface of ocean are	produced due to			
	a. wind	b. tidal movements	c. pull of sun	d. both a & b		
54.	The work done on a body will be negative when angle b/w force and displacement is					
	a. less than 90 ⁰	b. greater than 90 ⁰	c. equal to 90 ⁰	d. equal to zero		
55.	Which of the follow	ving is conservative force				
	a. gravitational forc	e b. magnetic force	c. electric force	d. all of these		
56.	Which of the follow	ving is non-conservative force				
	a. elastic spring force	ce b. electric force	c. propulsion force	d. gravitational force		
57.	Which of the follow	ving sources is renewable source	of energy			
	a. tides	b. coal	c. natural gas	d. oil		

Best Notes for PAF Initial Tests of Commissioned Officers

1.	. When a body moves along a circular path, it velocity						
	(a) remains same	(b) bec	come zero	(c) ch	anges continuously	(d) so:	metime changes
2.	The S.I unit of angular di	splacem	nent is				
	(a) degree	(b)	radian	(c)	revolution	(d)	meter
3.	A body rotating in a circle	e of radi	ius 1m with an	angular	speed 10 rad/s has the	tangent	ial velocity
	(a) 2 m/s	(b)	5 m/s	(c)	10 m/s	(d)	20 m/s
4.	One radian is equal to						
	(a) 67.3 ⁰	(b)	60 ⁰	(c)	57.3 ⁰	(d)	47.3 ⁰
5.	The moment of inertia is	measure	ed in				
	(a) kg m²	(b)	kgm ⁻²	(c)	N s	(d)	rad s ⁻¹
6.	The moment of inertia for	or ring of	r hoop is				
	(a) mr ²	(b)	$2/5 \text{ mr}^2$	(c)	$\frac{1}{2}$ mr ²	(d)	$1/12 \text{ mr}^2$
7.	If a person sitting on a ro	tating st	tool with his arr	n outstr	etched, contracts his a	rms, his	angular speed
	(a) decreases	(b)	increases	(c)	remains constant	(d)	becomes zero
	For more past paper	s of A	rmy, Navy a	nd PA	F visit website, htt	ps://w	ww.pakshaheens.com/

8.	Every point of rotating rigid body has same	
	(a) angular velocity (b) linear velocity (c) linear acceleration	(d) linear distance
9.	Angular momentum is maximum, when angle between linear momentum and n	noment is
	(a) 30° (b) 45° (c) 60°	(d) 90 ⁰
10	When a body is rotating with constant angular velocity, it tangential acceleration	n is
	(a) Zero (b) maximum (c) minimum	(d) none of these
11.	A diver changes his body position to conserve the	
	(a) angular velocity (b) linear velocity (c) linear acceleration	(d) angular momentum
12	A disc rolls down an inclined plane, it has	
	(a) translational K.E (b) rotational K.E (c) Gravitational P.E	(d) all of these
13	When a body is moving in upward direction with an acceleration 'a', it apparent	t weight
	(a) increases (b) decreases (c) equal to real weight	(d) becomes zero
14.	A beaker with water is placed on the rotating table. When water in the beaker is	s increased then its angular velocity
	(a) increases (b) decreases (c) unchanged	(d) becomes zero
15	When a sphere rolls down an inclined plane, its gravitational P.E is converted in	nto
	(a) translation K.E (b) rotational K.E (c) both a & b	(d) none of these
16	One Geo Stationary satellite covers a longitude of	
	(a) 110° (b) 120° (c) 125°	(d) 130°
17	For normal gravitational field gravity obeys	(4) 150
17.	(a) Newton's first law (b) Newton's second law (c) Newton's third law	(d) inverse square law
18	If a car moves with a uniform speed of 2 m/s in a circle of radius 0.4 m its and	ular speed is
10	(a) 5 rad/s (b) 4 rad/s (c) 0.8 rad/s	(d) 0.2 rad /s
19	For a particle moving in a horizontal circle with constant angular velocity	
17	(a) linear momentum is constant but energy varies (b) energy is constant	t but linear momentum varies
	(c) both energy and linear momentum are constant (d) neither energy no	r linear momentum are constant
20	The number of satellites which make global positioning system are	
_0	(a) 3 (b) 8 (c) 24	(d) 48
21	When a body moves along a circular path, the angle between its linear velocity	and angular velocity is
	(a) zero (b) 30° (c) 90°	(d) 180°
$\gamma\gamma$	The angular momentum L is defined by the equation	(u) 180
	(a) $\mathbf{L} = \mathbf{m}\mathbf{v}$ (b) $\mathbf{L} = \mathbf{r}\mathbf{v}\mathbf{F}$ (c) $\mathbf{L} = \mathbf{n}\mathbf{v}\mathbf{r}$	$(\mathbf{d})\mathbf{I} = \mathbf{r} \mathbf{v} \mathbf{n}$
23	(a) $\mathbf{L} = \mathbf{I} \mathbf{N}$ (b) $\mathbf{L} = \mathbf{I} \mathbf{X} \mathbf{F}$ (c) $\mathbf{L} = \mathbf{p} \mathbf{X} \mathbf{I}$ The angle subtended by the circumference of a circle of radius r is given by	$(\mathbf{u}) \mathbf{L} = \mathbf{I} \times \mathbf{p}$
23.	The angle subtended by the circumference of a circle of radius r is given by (a) 2π	(d) = r
24	The moment of inertia for a disc is given by	
24	(a) mr^2 (b) 2/5 mr^2 (c) 1/2 mr^2 (d) 1/12	mI ²
25	When a stone is whitled in a horizontal circle with the help of a string centrine	tal force is supplied by
23.	(a) mass of stone (b) tension in string (c) velocity of stone (d) cent	ripetal acceleration
26	(a) mass of stone (b) tension in string (c) velocity of stone (d) cent	inpetat acceleration
20.	(a) maximum work (b) minimum work (a) nagativa work	(d) no work
27	When the force is applied parallel to the axis of rotation of a body then angular	momentum is
27.	(a) maximum (b) minimum (c) zero	(d) cannot be fined
28	(a) maximum (b) minimum (c) zero	(d) calmot be fined
20.	(a) angular valority (b) moment of inertia (c) angular acceleration	(d) angular momentum
20	(a) angular verocity (b) moment of merua (c) angular acceleration The mud flies off the type of a moving biovele in the direction of	(u) angulai momentum
27.	(a) centre of wheel (b) tangent to the wheel (c) motion of the wheel	(d) none of these
30	When a body is moving in downward direction with an acceleration 'a' it appear	rent weight is
50	(a) $ma + ma$ (b) $ma - ma$ (c) ma	(d) zero
	For more past papers of Army, Navy and PAF visit website, http	os://www.pakshaheens.com/

31 The SLupits of angular mo	omentum ere		
(a) kg m s ⁻¹	(b) kg m s ⁻²	(c) kg $m^2 s^{-1}$	(d) kg m ² s ⁻²
(a) Kg III S 32 Which of the following pa	(0) Kg III S vir of physical quantiti	es does not have same dimens	(u) Kg III S
(a) torque and energy	(b) momentu	m and impulse	10115
(a) torque and energy	bne asem (b)	moment of inertia	
33 The value of g is maximum	(u) mass and	moment of merua	
(a) at equator	(b) at poles	(c) at centre of earth (d) h	etween note and equator
34 If a car moves with a unif	Form speed of 40 m/s i	n a circle of radius 0.4 m its a	ingular speed is
(a) 0.01 rad/s	(b) 16 rad /s	(c) 20 rad /s	(d) 100 rad /s
35 As we go below the surfa	(c) for aut is	of σ	(u) 100 1au /s
(a) increases	(b) decreases	(c) remains constant	(d) reduces to zero
36 The number of geo station	ary satellites to cover	whole earth are	(d) reduces to zero
(a) 3	(b) 8	(c) 24	(d) 30
37 When a body is moving al	long a circular path th	en such a motion is called	
(a) Vibratory motion	(b) rotatory motion	(c) linear motion	(d) none of these
38 Angular displacement is		(c) micu motion	(d) hole of these
(a) Scalar quantity	(b) vector quantity	(c) basic quantity	(d) none of thee
39 If the arc length of a circle	equals its radius, the	n the angle subtended at the ce	enter will be
(a) 1 degree	(b) one revolution	(c) one radian	(d) half revolution
40. Time rate of change of an	gular velocity called		
(a) linear acceleration	(b) angular accelera	tion (c) centripetal acceler	ration (d) vibration velocity
41. If the body is moving antic	clockwise direction. th	e direction of angular acceler	ation is
(a) along the axis of rota	tion (b) pe	rpendicular to the axis of rotat	ion
(c) opposite to axis of rota	ation (d) no	ne of these	
42. The moment of inertia is a	analogue to		
(a) mass	(b) torque	(c) force	(d) momentum
43. In case of planets, centripe	etal force is provided l)V	
(a) Coulomb's force	(b) electrostatic force	(c) gravitational force	(d) magnetic force
44. The ratio of moment of in	ertia of disc and hoop	is	
a. 1/4	b. 4/2	c. 3/4	d. 1/2
45. The tendency of a rotating	g object to continue ro	tating is called	
a. its linear momentum.	b.	its moment of inertia.	
c. its torque.	d.	its angular momentum.	
46. The weight of a body falli	ng freely will be	2015	
a. mg + $6\pi\eta$ r v	b. mg - $6\pi\eta$ r v	c. mg	d. zero
47. The minimum velocity rec	quired to put a satellite	e into orbit, is	
(a) 5.9 km s ⁻¹	(b) 6.9 km s ⁻¹	(c) 7.9 km s ⁻¹	(d) 8.9 km s ⁻¹
48. The expression for the orb	oital speed of a satellit	e is	
(a) $[Gr/M]^{1/2}$	(b) $[M/Gr]^{1/2}$	(c) $[r/GM]^{1/2}$	(d) $[M C/r]^{1/2}$
			(u) [N 0/1]
49. The apparent weight of a 1	man in a lift moving d	own with an acceleration of 9.	$.8 \text{ m/s}^2$ is
(a) zero	(b) 9.8 N	(c) 19.6 N	(d) infinity
50. The rotational K.E of disc	and hoop is		
(a) $\frac{1}{2}$ 100	(b) $\frac{1}{2}$ I ω^2	(c) $21\omega^2$	(d) $\frac{1}{2} 1^2 \omega$
51. The linear velocity of disc $\frac{1}{2}$			
	moving down an incl	ined plane is	1/2
(a) [gh]	te moving down an incl 1/2 (b) [4/3 gh]	ined plane is (c) $[2/3 \text{ gh}]^{1/2}$	(d) [gh/2] ^{1/2}
(a) [gh]52. A Geostationary satellite a	to moving down an incl 1/2 (b) [4/3 gh] above the surface of each	ined plane is (c) $[2/3 \text{ gh}]^{1/2}$ arth is at the height of	(d) [gh/2] ^{1/2}

1.	Water flows through a non-uniform pipe. The pressure will be low where
	(a) Speed is low (b) Speed is high (c) Speed is Zero (d) None of these
2.	The maximum drag force on a sphere falling with uniform velocity is 9.8N, its weight is
	(a) 1 N (b) 9.8 N (c) 19.8 N (d) zero
3.	Generally the blood pressure of a person
	(a) remains constant (b) increases with age (c) decreases with age (d) none of these
4.	Human blood pressure is measured in torr and 1 torr =
	(a) 133.6 Nm^{-2} (b) $1.33.5 \text{ Nm}^{-2}$ (c) 133.4 Nm^{-2} (d) 133.3 Nm^{-2}
5.	Venturi meter is used to measure
	(a) speed (b) pressure (c) viscosity (d) P.E
6.	Equation of continuity is another form of law of conservation of
	(a) mass (b) energy (c) momentum (d) All of these
7.	The terminal velocity of fog droplet is very small due to its
	(a) Small mass (b) temperature (c) viscosity (d) none of
8.	For an ideal fluid in flow, the streamlines are
	(a) parallel (b) perpendicular (c) anti-parallel (d) intersect each other
9.	In case of flying aeroplane, the pressure of the air above the wings isbottom of the wing
	(a) equal to (b) greater than (c) less than (d) none of these
10.	The high value of the human blood pressure is called
	(a) Systolic pressure (b) Diastolic pressure (c) Normal pressure (d) None of these
11.	Swing in the cricket ball is produced due to
	(a) Difference of air pressure (b) Spin of the ball (c) Deflecting force (d) All of these
12.	The equation $F = 6 \pi \eta r v$ is called
	(a) Newton's Law (b) Stoke's Law (c) Ohm's Law (d) Faraday's Law
13.	The smooth or steady flow of a fluid is called
	(a) turbulent flow (b) laminar flow (c) simple flow (d) fast flow
14.	If speed of body in a fluid increases then drag force on it
	(a) increases (b) decreases (c) remains same (d) becomes zero
15.	Sphygmomanometer is used to measure
1.0	(a) Speed (b) Pressure (c) Viscosity (d) P.E.
16.	Law of conservation of energy is used to derive
17	(a) Bernoulli's equation (b) Venture relation (c) Forricelli's equation (d) Equation of Continuity
17.	when temperature increases, the viscosity of the fluid
10	(a) decreases (b) increases (c) remains constant (d) becomes zero
18.	The S.I. units of flow rate are $(z) = w^2 z^2$
10	(a) m^2s^2 (b) m^2s^2 (c) m^2s^2 (d) m^2s^2
19.	(a) agreen of reding (b) reding
20	(a) square of radius (b) radius (c) cube of radius (d) square foot of radius
20.	The dimensions of co-efficient of viscosity are (a) $MI = 1^{-1}$ (b) $MI = 1^{-2}$ (c) $MI = 1^{-1}$ (d) $MI = 2^{-1}$
21	(a) ML1 (b) ML1 (c) ML $^{-1}$ (d) ML1
21.	(a) aqual to drag force (b) greater than drag force (c) loss than drag force (d) zero
22	(a) Equal to thag force (b) greater than drag force (c) less than drag force (d) zero
<i>LL</i> .	(a) motion through free space (b) motion through viscous medium
	(c) hodies of all shapes (d) all medium
Fo	or more past papers of Army Navy and PAF visit website https://www.pakshabeeps.com/
	mere pare papere or miny, many and the more mobile, impositional conditions

23.	Which of the following has	s minimum viscosity		
	(a) air	(b) blood	(c) water	(d) glycerin
24.	The device used for the me	easurement of liquid flow	w is	
	(a) manometer	(b) barometer	(c) hydrometer	(d) venturi meter
25.	The low value of the norm	al human blood pressure	e is called	
	(a) Systolic pressure	(b) Diastolic pressu	re (c) Normal p	pressure (d) less pressure
26.	The mathematical relation	$v_2 = \sqrt{2g(h^2 - h^1)} \text{is}$	known as	
	(a) equation of continuity	(b) Bernoulli's equa	ation (c) Torricelli	's theorem (d) venture relation
27.	A piece of ice is floating in	a jar containing water.	When the ice melts, t	then the level of water
	(a) rises (b) falls	(c) remains	unchanged (d)	rise of fall depends upon the mass of ice
28.	In equation of continuity the	ne units of Av is	NO E	
	(a) Cubic meter	(b) cubic meter /s	(c) m^2/s (d)	square meter
29.	The drag force on a spheric	cal object falling throug	h the air	
	(a) increases with increas	e of speed	(b) increases with o	decrease of speed
	(c) no change in drag force	e with change of speed	(d) decreases with	increase of size of object
30.	The pressure entered by a	column of mercury 76 c	m high and at 0 ⁰ C is	called
	(a) 1 atm	(b) 1 N m ⁻²	(c) 1 pascal	(d) none of these
31.	For which position will the	e maximum blood press	ure in the body have s	smallest value
	(a) standing upright	(b) sitting	(c) lying horizont	ally (d) standing on one's head
32.	The maximum velocity att	ained by a spherical dro	plet when the drag for	rce F and the weight of the droplet W
	become equal is called			
	(a) average velocity (b)	root mean square veloci	ty (c) uniform velo	ocity (d) terminal velocity
33.	Generally at higher velocit	ies the flow is		
	(a) laminar	(b) turbulent	(c) very slow	(d) very fast
34.	The frictional effect between	en different layers of m	oving fluid is called	
	(a) density	(b) pressure	(c) force	(d) viscosity
35.	Normally human blood de	nsity is equal to		
	(a) 111 kg m^{-3}	(b) 133.3 kg m ⁻³	(c) $80-120 \text{ kg m}^{-3}$	(d) water density
36.	A fluid is called ideal fluid	l if		
	(a) it is non-viscous	(b) it is incompressi	ble (c) it has lami	nar flow (d) all of these
37.	The velocity of efflux is m	easured by the relation		
	(a) $(gh)^{1/2}$	(b) $(gh/2)^{1/2}$	(c) $(2gh)^{1/2}$	$(d) (4/3gh)^{1/2}$
38.	A two meter high tank is f	ull of water. A hole is m	ade at the its middle.	The speed of efflux
	(a) 3.75 m/s	(b) 4.42 m/s	(c) 4.91 m/s	(d) 5.11 m/s
39.	The irregular flow of a flu	id is called		
	(a) turbulent flow	(b) laminar flow	(c) steady flow	(d) simple flow
40.	Human blood pressure is r	neasured in		
	(a) Nm^{-2}	(b) mm	(c) N m	(d) cm
41	Density of water is	(0) 1111	(0) 10 11	(d) chi
	(a) 10000km^{-3}	(b) 1000 km^{-3}	(a) 100 km^{-3}	(d) 10 kg m ⁻³
40	(a) 10000 kg m ⁻¹	(D) IUUU Kg m $^{\circ}$	(c) 100 kg m^2	(d) 10 kg m ⁻²
42.	(a) 1.2 times	(h) 2.2 times	(a) 2 4 times	$(\mathbf{d}) 2 5 \mathbf{times}$
12	(a) 1-2 units Venturi duat in the conturn	(0) 2-3 times	ed to	(u) 3-3 units
43.	(a) mix patrol and air	(b) decrease prose	tu iv	a & b (d) none of these
<u>4</u> 4	(a) mix partor and an Human blood	(b) ucci case pressu		
ıт.	(a) is compressible (h)	is incompressible (a	c) has large viscosity	(d) has density equal to patrol

45.	When the streamlines of the fl	uid are closer to eac	ch other, the pressure a	at that point	
	(a) increases	(b) decreases	(c) remains consta	ant (d) becomes zero	
46.	The diameter of a pipe is 20 cm	m. it cross-sectional	area is		
	(a) 3.14 cm^2	(b) 314 cm^2	(c) 3140 cm^2	(d) 0.314 cm^2	
47.	Bernoulli's theorem is valid for)r			
	(a) laminar flow	(b) turbulent flow	(c) both a & b	(d) irregular flow	
48.	When water enters to a pipe of	f smaller area from	a pipe having larger a	rea, its	
	(a) pressure remains constant	(b) pressure increa	ases (c) speed incre	eases (d) speed decreases	
49.	Drag force acts on a body mov	ving through a fluid			
	(a) along the motion of body	(b) perpend	icular to the motion of	f body	
	(c) opposite to the motion of	body (d) at 60 de	gree angle to the direc	ction of motion of body	
50.	30 kg of water flows out from	a pipe in 60 s. The	mass flow per second	of water is	
	(a) 2 kg/s	(b) 0.5 kg/s	(c) 180 kg/s	(d) 1800 kg/s	
51.	The S.I units of coefficient of	viscosity are			
	(a) kg m ⁻¹ s ⁻¹	(b) kg m ² s ⁻²	(c) kg m s ⁻²	(d) N m s ²	
52.	If volume of a sphere increase	s then terminal velo	city		
	(a) remains same	(b) increases	(c) decreases	(d) none of these	
53.	Terminal velocity is directly p	roportional to			
	(a) mass of object (b) square	of radius of object	(c) both a&b (d)	inversely proportional to radius of object	x
54.	Which of the following has his	ghest viscosity			
_	(a) water	(b) milk	(c) honey	(d) glycerin	
For	more past papers of Army	, Navy and PAI	- visit website, htt	ps://www.pakshaheens.com/	_
	Best Notes for P	AF Initial	Fests of Con	missioned Officers	
					_
1.	The maximum distance of vib	rating body from th	e mean position when	the body is executing SHM is called	
	a. displacement b. time	period c. fr	equency	d. amplitude	
2.	The sharpness of resonance is	proport	ional to damping		
	a. directly b. expo	onentially c. in	iversely	d. not related	
3.	The wave form of body execu	ting SHM is			
	a. pulsed wave b. sine	wave c. s	quare wave	d. cosine wave	
4.	The time period of second pen	dulum is			
	a. 1 s b. 2 s	c. 3	S	d. 4 s	
5.	The formula for frequency of	simple pendulum is			
	a. $\frac{1}{\sqrt{2}}$ b. $2\pi\sqrt{2}$	- с. 2	$\pi \sqrt{g}$	d. $\frac{1}{\sqrt{g}}$	
	2π g	g	l	2π l	
6.	A simple harmonic oscillator	completes 30 vibrat	ions in 5 seconds. Its f	requency is	
_	a. 30 Hz b. 150	Hz c. 6	Hz	d. 5 Hz	
7.	The process in which energy is	s dissipated from os	cillation system is kno	own as	
0	a. Damping b. Conc	luction c. C	onvection	d. Thermionic	
8.	The vibration of a factory floo	or caused by the run	ning of heavy machine	ery is an example of	
	a. Forced vibration b. Free	vibration c. b	oth a & b	d. None of these	
9.	$[T^{-1}]$ is the dimension of				
	a Time b. Fre o			1 4 1 /	
10		uency C. F	lice	d. Acceleration	
10.	Heating is produced in a micro	owave oven by the j	bhenomena	d. Acceleration	

11.	If mass of the bob of a	pendulum is doubled	l, its period	
	a. becomes half	b. becomes one third	c. becomes doubled	d. remains same
12.	Time period of horizo	ntal mass spring syste	em is given by	
	a. $2\pi\sqrt{\frac{m}{k}}$	b. $2\pi \sqrt{\frac{k}{m}}$	$c. \frac{1}{2\pi} \sqrt{\frac{m}{k}}$	d. $\frac{1}{2\pi}\sqrt{\frac{k}{m}}$
13.	A system under going	forced vibrations is k	tnown as	
	a. simple pendulum	b. simple harmonic o	scillator c. 2 nd pendulum	d. Driven harmonic oscillator
14.	Damping is a process v	whereby energy is	from the oscillating system	
	a. conserved	b. dissipated	c. both a & b	d. none of these
15.	If projection N starts it	motion from upper e	xtreme and subtends an angle of 45°	, then total phase is
	a. 45 ⁰	b. 90 ⁰	c. 120 ⁰	d. 135 ⁰
16.	The angular speed of the	he mass attached to a	spring is	
	$2\pi m^{m}$	b $2\pi\sqrt{k}$	$\int 1 \sqrt{m}$	$d = 1 \sqrt{k}$
	a. $2n\sqrt{k}$	m	$2\pi k$	2π m
17.	When a particle is mov	ving along a circular p	bath, its projection performs	along the diameter.
	a. linear motion	b. vibratory motion	c. SHM	d. rotatory motion
18.	In SHM the velocity of	f a particle is maximu	im at	
	a. mean position	b. extreme position	c. between mean and extreme	d. none of these
19.	Time period of simple	pendulum is independent	dent of	
	a. mass	b. length	c. acceleration due to gravity	d. restoring force
20.	If $F = 0.08$ N and $x = 4$	1cm then K is equal to)	
	a. 8 N/m	b. 6 N/m	c. 4 N/m	d. 2 N/m
21.	The product of time pe	riod and frequency is		
	a. zero	b. 1	с. л	d. 2
22.	The oscillation in whic	h amplitude decrease	ed steadily with the time are called	
	a. natural oscillations	b. damped oscillation	ons c. free oscillations	d. forced oscillations
23.	If time period of simpl	e pendulum is 2s, it fi	requency will be	
.	a. 1 Hz	b. 1.5 Hz	c. 0.5 Hz	d. 2 Hz
24.	The time period of sim	ple pendulum depend	ls upon	
25	a. length of pendulum	b. mass of bo	c. amplitude of pendulum	d. mass of thread
25.	If the amplitude of the	simple pendulum is d	loubled, its time period	d monoing constant
26	a. becomes one nam	D. Decomes one unit	d c. becomes doubled	d. remains constant
20.			2	2
	a. m ⁻¹	b. N m ⁻¹	c. N m ⁻²	d. N m^2
27.	Length of simple pend	ulum whose time peri	iod is 1 s.	
•	a. 0.25 m	b. 25 m	c. 100 m	d. 0.25 cm
28.	The wave form of a bo	dy performing SHM		
20	a. Square wave	b. sine wave	c. circular wave	d. pulse
29.	The force responsible i	for producing the vibr	atory motion in simple pendulum is	d ma
20	a. mg cost	D. mg sino	c. mg tano	d. mg
50.	is movimum	b is minimum	, at resonance	d bacomas zoro
31	a. IS IIIAXIIIIUIII The frequency of horiz	U. 18 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	c. remains constant	u. UECOMES ZEIO
51.	\overline{m}	\sqrt{k}	1 m	r <u>k</u>
	a. $2\pi\sqrt{\frac{n}{k}}$	b. $2\pi \sqrt{\frac{n}{m}}$	c. $\frac{1}{2\pi}\sqrt{\frac{k}{k}}$	d. $\frac{1}{2\pi}\sqrt{\frac{n}{m}}$

32.	The restoring force in SHM is always		
	a. directed towards mean position	b. directed away from mean position	
	c. directed at angle of 60°	d. directed at angle of 45 ⁰	
33.	If projection N starts its motion from lo	ower extreme and subtends a further angle	of 45 ⁰ , then total phase
	is a. 180 ^o b. 270 ^o	c. 290 ⁰	d. 315 ⁰
34.	When a simple harmonic oscillator is a	t its mean position, its	
	a. K.E is maximum b. P.E. is maxim	um c. K.E. is zero	d. K.E. is minimum
35.	Shock absorbers of a car is a practical e	example of	
	a. SHM b. forced oscilla	tions c. damped oscillations	d. resonance
36.	If the spring of spring constant K is cut	into two pieces then spring constant of each	ch spring is
	a. K b. 2K	c. K/2	d. none of these
37.	Tuning of radio is a best example of		
	a. mechanical resonance b. electrica	l resonance c. magnetic resonance	d. all of these
38.	The to & fro motion of a body about a	mean position is called	
	a. Linear motion b. Oscillatory n	notion c. Rotatory motion	d. none of these
39.	The max. K.E of a mass attached to a s	pring and passing through its mean positio	n is given by
	a. $(K.E)$ max = k x _o b. $(K.E)$ m	$\max = k x_0^2$ c. (K.E) $\max = (k x_0)^2$	d. (K.E)max = $(1/2)$ k x ₀ ²
40.	A body execute SHM, its P.E., K.E and	l total energy (T.E) are measured as a func	tion of displacement x. Which of
	the following statement is true?		
	a. T.E = 0 when $x=0$	b. K.E is maximum when x is maxin	num
	c. P.E is maximum when $x = 0$	d. K.E is maximum when $x = 0$	
41.	A body is executing SHM. What fraction	on of its total energy will be kinetic energy	when its displacement from
	the mean position half of its displacem	nent?	
	a. 1/2 b. 3/2	c. 3/4	d. 1/4
42.	A body is executing SHM motion with	an amplitude A, the total displacement cov	vered in a time equal to its Time-
	period will be		
	a. A b. 4A	c. 2A	d. zero
43.	Which of the following is an example of	of damped oscillation?	
	a. mass attached to spring b. simple	e pendulum c. shock absorber of a car	d. All of these
44.	The frequency of a second's pendulum	is	
	a. 1 Hz b. 05 Hz	c. 1.5 Hz	d. 2 Hz
45.	The acceleration of a body performing	SHM depends upon its	
	a. mass b. time period	c. amplitude	d. displacement
46.	If 'f' is the frequency of a body perform	ming SHM, its angular frequency is given	by
	a. 4πf b. 2πf	с. 3 <i>л</i> f	d. $\pi f/2$
47.	If mass of simple pendulum becomes d	ouble, then its time period will be	
	a. double b. half	c. four times	d. remains same

1.	When a wave refle	ects from boundary of th	e rare medium, the reflected	l wave, phase change will be
	a. 0 ⁰	b. 60 ⁰	c. 90 ⁰	d. 180 ⁰
2.	The distance betw	een the two consecutive	nodes is	
	a. λ	b. 2λ	c. λ/2	d. λ/4
3.	The speed of soun	d in vacuum is		
	a. Zero	b. 300 m/s	c. 332 m/s	d. 340 m/s
4.	At what temperatu	re the speed of sound in	air becomes double.	
	a. 750 ⁰	b. 819 ⁰	c. 719 ⁰	d. 859 ⁰
5.	If the tension is ma	ade four times, the speed	d of the transverse waves wi	ill become
	a. double	b. three times	c. four times	d. remains constant
6.	If the pressure of t	he gas is doubled, the ve	elocity of sound in it will be	
	a. doubled	b. three times	c. four times	d. remains constant
7.	Red shift indicates	s that the stars		
	a is moving towar	ds earth	h, is moving away from	n earth
	c is stationary		d none of these	
8	Sound waves trave	el faster in	a. none of these	
0.	a solid	b liquid	C GASSES	d vacuum
9	Two waves can in	terfere only if they have	c. 500000	d. Vuotum
).	a phase coherence	h same speed	c different frequencies	d all of these
10	The speed of sour	d is independent of	e. uniferent frequencies	u. an of these
10.	a temperature	h density	e prossure	d medium
11	The error in the ve	olue of speed of sound of	olculated by Newton at STP	d. medium
11.		h 15 %		d 18.04
10	a. 14 70 The speed of sour	U. IJ 70 d is greater in solids due	C. 10 /0	u. 10 70
12.	The speed of soun	a is greater in somas due		1
12	a. density	D. temperature	c. elasticity	d. pressure
15.	The waves of equa	h differentian	opposite direction give rise	d heate
14	a. Interference	b. diffraction	c. stationary waves	d. deats
17.	a. nodes is formed	r an organ pipe	b. anti-node is formed	
	c. node or anti-no	de is formed	d. neither node nor anti-	-node is
15.	Fixed ends of a vil	brating string are	10000	
	a. nodes	b. antinodes	c. overtones d.	. neither nodes nor anti-nodes
16.	The louder the sou	ind, the greater will be it	S	
	a. amplitude	b. wavelength	c. speed	d. frequency
17.	Types of waves us	sed in Sonar are		
	a. electromagnetic	waves b. water wa	ves c. matter waves	d. sound waves
18.	For each degree ri	se in Celsius temperatur	e of gas, the speed of sound	l through it increases by
	a. 0.60 m/s	b. 0.61 m/s	c. 0.60 cm/s	d. 0.60 cm/s
19.	The speed of soun	d has maximum value in	1	
	a. oxygen	b. helium	c. hydrogen	d. air
20.	If 20 waves pass the	hrough a medium in 1 se	econd with a speed of 20 m/	's then wavelength is
	a. 20 m	b. 40 m	c. 400 m	d. 1 m
21.	Frequency of the v	waves for an organ pipe	open at one end is	
	a. nv / 2]	b. nv / 4]	c. nv / 3]	d. 4 // nv

22.	When a wave reflec	ts from the boundary o	of the denser medium, reflection	ected wave, phase change will be
	a. 0 ⁰	b. 60 ⁰	c. 90 ⁰	d. 180 ⁰
23.	If the pressure of the	e gas is doubled, the ve	elocity of sound in it will l	be
	a. doubled	b. three times	c. four times	d. remains constant
24.	Doppler effect is ap	plicable to		
	a. sound waves	b. light waves	c. both a & b	d. none of these
25.	Sound waves canno	t be		
	a. diffracted	b. refracted	c. reflected	d. polarized
26.	When source of sou	nd moves away the wa	welength of sound waves	
	a. increases	b. decreases	c. remains constant	d. none of these
27.	Blue shift indicates	that the stars		
	a. is moving towar	ds earth b. is mo	oving away from earth	c. is stationary d. none
27.	Frequency of the wa	aves for organ pipe ope	en at both ends is	
	a. nv / 2 <i>l</i>	b. nv / 4 l	c. $nv/3l$	d. $4l/nv$
28.	The particles veloci	ty at nodes of the static	onary waves is	
	a. maximum l	o. minimum	c. zero d. somet	imes minimum and sometimes maximum
29.	On loading the prom	ng of a tuning fork, its f	frequency	111 119 C
	a. remains constant	b. increases	c. decreases d. sor	netime increases sometime decreases
0.	The speed of the wa	ves produced in the str	etched string depends upo	on the
	a. tension in string	b. mass per unit leng	gth of string c. leng	gth of string d. both a & b
1.	Two tuning forks ha	ving frequencies 512 H	Hz and 516 Hz are sounde	ed together, the beat frequency is
	a. 1 Hz	b. 2 Hz	c. 3 Hz	d. 4 Hz
2.	The distance betwee	en two consecutive nod	les or two consecutive anti	inodes in stationary waves is
_	a. $\lambda/4$	b. λ/2	c. λ	d. 2λ
3.	Two waves of equal	frequency travelling in	n same direction give rise	to phenomena, called
	a. interference	b. beats	c. compression waves	d. stationary waves
4.	The wavelength of t	he fundamental mode of	of stationary waves produ	iced in an organ pipe closed at one end is
_	a. ℓ / 2	b. l	c. 2 l	d. 4 l
5.	Newton calculated s	peed of sound in air at	STP equal to	
	a. 250 m/s	b. 280 m/s	c. 300 m/s	d. 333 m/s
6.	Increase in velocity	of sound in air for even	ry 1 ^o C rise in temperature	e is
	a. 1.61 m/s	b. 0.61 m/s	c. 16.1 m/s	d. 2.0 m/s
7.	Silence zone takes p	lace due to		
	a. constructive interf	ference b. destru	ctive interference c.	stationary waves d. beats
8.	Radar is a practical a	application of		
	a. stationary waves	b. beats	c. Doppler effect	d. none of these
9.	Wavelength of x-ray	ys is of the order of		
	a. 10 ⁻¹⁰ m	b. 10 ⁻⁸ m	c. 10 ⁻⁶ m	d. 10 ⁻⁴ m
0.	The speed of sound	in air is at 0 ⁰ C is 330 r	m/s. Its speed at 2 ⁰ C is	
	a. 333.2 m/s	b. 335 m/s	c. 330 m/s	d. none of these
1.	The beats are formed	d when two notes of fre	equencies f_1 and f_2 ($f_1 > f_2$	2) are sounded together, then beat f will be
	a. f1 + f2	b. f1 - f2	c. $(f1 + f2) / 2$	d. (f1 - f2) / 2
12.	The waves which do	o not require any mediu	um for their propagation a	re called
	a. mechanical waves	b. electromagnetic	waves c. matter wave	d. stationary waves
13.	Propagation of soun	d waves through air is		-
	a. isothermal process	s b. adiabatic proc	ess c. isochoric proc	cess d. none of these

44.	The density of oxyg oxygen	en is 16 times greater t	han hydrogen. The speed of s	ound in hydrogengreater than
	a. 2 times	b. 3 times	c. 4 times	d. 16 times
45.	Fundamental freque	ncy of stationary wave	s produced in stretch string is 3	30 Hz. Frequency of fourth harmonics is
	a. 30 Hz	b. 60 Hz	c. 90 Hz	d. 120 Hz
46.	When source and ob	oserver are moving in sa	ame direction with same speed	l, the apparent frequency will
	a. increase	b. decrease	c. remain same	d. becomes zero
47.	When observer mov	es away from a station	ary source with a speed equal s	speed of sound, apparent frequency will
	a. decrease	b. increase	c. remain same	d. become zero
48.	When source moves	towards a stationary of	bserver with a speed equal spe	eed of sound, apparent frequency become
	a. double	b. four time	c. half	d. one by four
49.	The ultrasonic have	the frequencies		
	a. in audible range	b. below 20 Hz	c. above 20,000 Hz	d. none of these
50.	The ratio of speed of	f sound in hydrogen to	the speed of sound in oxygen	is
	a. 4:1	b. 1:4	c. 8:1	d. 1:8
51.	Sound waves are			
	a. longitudinal wav	es b. transverse waves	c. stationary waves	d. standing waves
52.	Two tuning forks pr	oduce two beats in the	time interval of 0.4 s, so beat f	frequency is
	a. 8 Hz	b. 5 Hz	c. 2 Hz	d. 6 Hz
53.	Which of the follow	ing media can transfer	both longitudinal and transver	rse waves?
	a. solid	b. liquid	c. plasma	d. gas
54.	If pressure is double	ed the speed of sound is		
	a. also doubled	b. become four time	c. become half	d. not effected
55.	The speed of sound	is has maximum value	in	
	a. oxygen	b. air	c. hydrogen	d. helium
56.	A set of frequencies	, which is the multiple	of fundamental frequency is ca	alled
	a. beat frequency	b. harmonics	c. Doppler effect	d. nodal wave front
57.	The wavelength of r	nicrowaves is		
	a. 10 cm	b. 12 cm	c. 14 cm	d. 15 cm
58.	Wave can transmit f	from one place to anoth	er	
	a. Wavelength	b. amplitude	c. matter	d. energy

Best Notes for PAF Initial Tests of Commissioned Officers

1.	Polarization of light s	hows that light waves	are	
	a. Compression wave	s b. Transverse wa	ves c. Longitudinal waves	d. Matter waves
2.	The central point of N	Newton's rings with tra	insmitted light is	
	a. red	b. blue	c. dark	d. bright
3.	Formation of colorful	l pattern in a thin film	of oil is due to	
	a. Interference	b. diffraction	c. scattering	d. dispersion
4.	When electromagneti	c waves strike the bou	ndary of denser medium they a	are
	a. reflected in phase	b. reflected out of p	hase c. absorbed	d. refracted
5.	The points of constru	ctive interference of m	onochromatic light are	
	a. always dark	b . always bright	c. neither bright nor dark	d. both a & b
6.	In Young's double sl	it experiment, the fring	ge spacing is equal to	
	a. λ L / d	b. d / λ L	c. $\lambda d / L$	d. $2\lambda L/d$

a. Hordina's found b. Fresherich C. MaxWeil G. Huygens b. Huygen's principle's used to a. explain polarization b. locate new wave front c. find the speed of light d. find refractive index 9. The distance between two consecutive dark fringes is called a. wave length b. fringe spacing c. wavelet d. amplitude 10. The fringe spacing in a double slit experiment can be increased by decreasing a. wavelength of light b. width of slits c. slit separation d. distance b/w slit and screen 11. Oxcillating charges produces a. Matchanical waves b. electromingmetic waves c. matte waves d. longitudinal waves 1 12. The angle of 180° is equivalent to a path difference of a. A. b. $\lambda/2$ c. $\lambda/4$ 13. The polarization of light can be achieved by the process of a. all of these 14. When sunfight passes through atmosphere, its energy reduces due to a. reflection of dust particles b. scattering by dust particles c. alsorption by dust particles d. All of these 15. If more M1 in Michelson Interferometer is moved by a distance of $\lambda/4$, then path difference is a. a. $\lambda/4$ b. λ c. $\lambda/2$ d. $\lambda/4$ 16. A Differenzal multiple of $\lambda/2$ b. integral multiple of $\lambda/4$ b. integral multiple of $\lambda/4$ c. integral multiple of $\lambda/4$ 17. The condition for constructive interference of two coherent hears is that the path differen	7.	The wave nature of light was proposed by	- M11	1 Hammen
a. explain polarization b. locate new wave front c. find the speed of light d. find refractive index 9. The distance between two consecutive dark fringes is called a. awave length b. fringe spacing c. wavelet d. amplitude 10. The fringe spacing in a double slit experiment can be increased by decreasing a. awavelength of light b. distance betw slit and screen 11. Oscillating charges produces a. Mechanical waves b. electromagnetic waves c. matte waves d. longitudinal waves 12. The angle of 180 ⁰ is equivalent to a path difference of a. λ b. $\lambda/2$ c. $\lambda/4$ d. 2λ 13. The polarization of light can be achieved by the process of a. selective absorption b. reflection c. refraction d. all of these 14. When sumfight passes through atmospheric its energy reduces due to a. a. $\lambda/4$ d. $\lambda/4$ 15. If mirror M1 in Michelson Interferometer is moved by a distance bitwa the path difference is a. 2.2 b. λ c. 2.2 d. none of these 15. If mirror M1 in Michelson Interferometee of two coherent beams is that the path difference should be a. dot integral multiple of $\lambda/2$ b. integral multiple of λ 16. A line normal to wave front indicating the direction of motion is called a. d. none of these<	8	a. I nomas Young D. Fresner Huygen's principle is used to	c. Maxwell	a. Huygens
a. Explain point point we wave roug to make the speed of light d and the link of the speed of light d and light d an	0.	a explain polarization b least new way	front a find the and	and of light d find refractive index
Production of consecutive data images is clared a. wave length b. Fringe spacing in a double slit experiment can be increased by decreasing a. wavelength of light b. width of slits c. slit separation d. distance b/w slit and screen 10. Oscillating charges produces a. Mechanical waves b. electromagnetic waves c. slit separation d. distance bit wilth and screen 11. Oscillating charges produces a. Mechanical waves b. electromagnetic waves c. slit separation d. distance bit walts 12. The angle of 180° is equivalent to a path difference of a. selective absorption b. reflection c. slit separation d. all of these 13. The polarization of light can be achieved by the process of a. all of these d. all of these 14. When sounfight passes through atmosphere, its energy reduces due to a. areflection of dust particles b. scattering by dust particles c. absorption by dust particles 15. If mirror M1 in Michelson Interference of two coherent beams is that the path differences is a. 2.2 b. λ c. λZ d. $\lambda 4$ 16. A line normal to wave front indicating the direction of motion is called a. wave b. ray c. is less than d. has no comparison 17. The distance betworn two bright fringes	0	The distance between two consecutive dor	z fringes is called	ed of light d. find feffactive index
The fringe spacing in a double slit experiment can be increased by decreasing a. wavelength of light b. width of slits c. slit separation d. distance b/w slit and screen 1. Oscillating charges produces a. Mechanical waves b. electromagnetic waves c. matte waves d. longitudinal waves 12. The angle of 180° is equivalent to a path difference of a. λ b. $\lambda/2$ c. $\lambda/4$ d. 2λ 13. The polarization of light can be achieved by the process of a. selective absorption b. reflection c. refraction d. all of these 14. When sunlight passes through armosphere, its energy reduces due to a. reflection of dust particles b. scattering by dust particles c. absorption by dust particles d. All of these 15. If mirror M1 in Michelson Interferometer is moved by a distance of $\lambda/4$, then path difference is a. 2λ b. λ c. $\lambda/2$ d. $\lambda/4$ 16. A line normal to wave front indicating the direction of motion is called a. wave b. ray c. pulse d. all of these 17. The condition for constructive interference of two coherent beams is that the path difference should be a. doll integral multiple of $\lambda/2$ d. integral multiple of $\lambda/4$ 17. The distance between two bright fringes distance between two consecutive dark fringes a. is greater than b. is equal to c. is less than d. has no comparison 19. The appearance of colors in the bubble of soap when sun light falls on it, is due to a. diffraction b. polarization c. interference d. dispersion 21. The distance between two obstacles is called a. diffraction b. polarization c. interference d. dispersion 21. The distance bit wave consecutive wave fronts is called a. diffraction b. interference c. polarization d. refraction 23. The polaroid sung diseases are better than ordinary sun glasses because they a. increase intensity of light b. decrease intensity of light d. intensity of light 32. One angestrom (A) is equal to 33. a. 10 ⁻¹⁰ m. b. 10 ⁻⁹ m. c. 10 ⁻¹² m. d. 10 ⁻¹⁵ m.	9.	a wave length b fringe spacing		d amplitude
a. wave b. ray c. pulse distance of $\lambda/4$ d. 2 λ 1. Deciding characteristic end of the second structure the second structure structure the second s	10	The fringe spacing in a double slit experim	ent can be increased by	u. ampitude
1. Oscillating charges produces a. Mechanical waves b. electromagnetic waves c. matte waves d. longitudinal waves 12. The angle of 180° is equivalent to a path difference of a. λ b. $\lambda/2$ c. $\lambda/4$ d. 2λ 13. The polarization of light can be achieved by the process of a. selective absorption b. reflection c. refraction d. all of these 14. When sunlight passes through atmosphere, its energy reduces due to a. reflection of dust particles b. scattering by dust particles c. absorption by dust particles d. All of these 15. If mirror M1 in Michelson Interferometer is moved by a distance of $\lambda/4$, then path difference is a. 2λ b. λ c. $\lambda/2$ d. $\lambda/4$ 16. A line normal to wave front indicating the direction of motion is called a. wave b. ray c. pulse d. none of these 17. The condition for constructive interference of two coherent beams is that the path difference should be a. odd integral multiple of $\lambda/2$ b. integral multiple of $\lambda/4$ 17. The distance between two bright fringes distance between two consecutive dark fringes a. is greater than b. is equal to c. is less than d. has no comparison 19. The appearance of colors in the bubble of soap when sun light falls on it, is due to a. diffraction b. polarization c. interference d. dispersion 21. The distance between two consecutive wave fronts is called a. diffraction b. polarization c. interference 13. Newton's rings are formed due to a. diffraction b. interference c. polarization d. refraction 21. The distance better than ordinary sun glasses because they a. increase intensity of light b. decrease intensity of light d. none 21. Michelson's interference transe intensity of light d. intensity of light 23. One angstrom (A) is equal to a. 10^{-10} m. $b. 10^{-9}$ m. $c. 10^{-12}$ m. $d. 10^{-15}$ m. 24. Michelson's interference transe uneasure a. amplitude of light b. wavelength of light c. speed of light d. intensity of light 25. One angstrom (A) is equal to	10.	a wavelength of light b width of slits	c slit separation	d distance b/w slit and screen
a. Mach anical waves b. electromagnetic waves c. matte waves d. longitudinal waves a. Mach anical waves b. electromagnetic waves c. matte waves d. longitudinal waves 12. The angle of 180° is equivalent to a path difference of a. λ b. λ c. λ /4 d. 2λ 13. The polarization of light can be achieved by the process of a. selective absorption b. reflection c. refraction d. all of these 14. When sunlight passes through atmosphere, its energy reduces due to a. reflection of dust particles b. scattering by dust particles c. absorption by dust particles d. All of these 15. If mirror M ₁ in Michelson Interferometer is moved by a distance of λ /4, then path difference is a. 2λ b. λ c. λ /2 d. λ /4 16. A line normal to wave front indicating the direction of motion is called a. wave b. ray c. pulse d. none of these 17. The condition for constructive interference of two coherent beams is that the path difference should be a. odd integral multiple of λ /2 b. integral multiple of λ /4 18. The distance between two bright fringes distance between two consecutive dark fringes a. is greater than b. is equal to c. is less than d. has no comparison 19. The appearance of colors in the bubble of soap when sun light falls on it, is due to a. diffraction b. polarization c. interference d. dispersion 21. The distance b/w two consecutive wave fronts is called a. diffraction b. interference c. polarization d. integral multiple of λ 21. The polariod sun glasses are better than ordinary sun glasses because they a. increase intensity of light b. decrease intensity of light c. do not change intensity of light d. none 21. Michelson's integrare formed due to a. diffraction b. 10^{-9} m, c. 10^{-12} m, d. 10^{-15} m, 23. N/L b. $1./N$ c. $1./2$ M, $d.$ $2.N/L$ 24. Confinement of light b. wavelength of light c. speed of light d. alor 15 m, 24. N/L b. $1./N$ c. $1./2$ M, $d.$ $2.N/L$ 27. Confinement of light	11	Oscillating charges produces	c. sit separation	d. distance of w sitt and serven
12. The angle of 180° is equivalent to a path difference of a. λ b. $\lambda/2$ c. $\lambda/4$ d. 2λ 13. The polarization of light can be achieved by the process of a. selective absorption b. reflection c. refraction d. all of these 14. When sunlight passes through atmosphere, its energy reduces due to a. reflection of dust particles b. scattering by dust particles c. refraction d. all of these 15. If mirror M1 in Michelson Interferometer is moved by a distance of $\lambda/4$, then path difference is a. 2λ b. λ c. $\lambda/2$ d. $\lambda/4$ 16. A line normal to wave front indicating the direction of motion is called a. wave b. π c. $\mu/2$ d. none of these 17. The condition of constructive interference of two coherent beams is that the path difference should be a. odd integral multiple of $\lambda/2$ b. integral multiple of λ c. is less than d. has no comparison 18. The distance between two bright fringes distance between two consecutive dark fringes a. ifferation b. polarization c. is less than d. has no comparison 19. The distance between two bright fringes is stanterference d. dispersion 21. The distance between two consecutive wave fronts is called a. diffraction b. polarization c. interference d. displacement <t< td=""><td>11.</td><td>a. Mechanical waves b. electromagneti</td><td>c waves c. matte</td><td>waves d. longitudinal waves</td></t<>	11.	a. Mechanical waves b. electromagneti	c waves c. matte	waves d. longitudinal waves
a λ b $\lambda 2$ c $\lambda 4$ d 2λ The polarization of light can be achieved by the process of a selective absorption b . reflection c . refraction d . all of these i When sunlight passes through atmosphere, its energy reduces due to a. reflection of dust particles b . scattering by dust particles c . absorption by dust particles d . All of these i f mirror M1 in Michelson Interferometer is moved by a distance of $\lambda 4$, then path difference is a. 2λ b . λ c . λZ d . $\lambda 4$ i All on one of these i a. 2λ b . λ c . λZ d . $\lambda 4$ i All one normal to wave front indicating the direction of motion is called a. wave b . ray c . pulse d . none of these i a. duiling for constructive interference of two coherent beams is that the path difference should be a . add integral multiple of $\lambda 2$ b . integral multiple of λ c . integral multiple of $\lambda 2$ d . integral multiple of λ c . integral multiple of $\lambda 2$ d . integral multiple of λ c . integral multiple of $\lambda 2$ d . integral multiple of λ c . integral multiple of $\lambda 2$ d . integral multiple of λ c . integral multiple of $\lambda 2$ d . integral multiple of λ c . integral multiple of $\lambda 2$ d . distance between two consecutive dark fringes a is greater than b . b is equal to c . is less than d . has no comparison 19 . The appearance of colors in the bubble of soap when sun light falls on it, is due to a . diffraction b . polarization c . interference d . dispersion 21 . The distance b/v two consecutive wave fronts is called a . diffraction b . Inequency c . wavelength d . displacement 22 . Newtor's rings are formed due to a . altiffraction b . Interference c . polarization d . not change intensity of light d . none 3 . The polaroid sung glasses are better than ordinary sung glasses because they a . increase intensity of light b . decrease intensity of light d . intensity of light 3 . One 4 . 10^{-15} m 4 . 10^{-15} m 5 . One angestrom (Λ) is equa	12.	The angle of 180° is equivalent to a path	difference of	
13. The polarization of light can be achieved by the process of a selective absorption b. reflection c. refraction d. all of these 14. When sunlight passes through atmosphere, its energy reduces due to a. reflection of dust particles b. scattering by dust particles c. absorption by dust particles d. All of these 15. If mirror M1 in Michelson Interferometer is moved by a distance of $\lambda/4$, then path difference is a. 2λ b. λ c. $\lambda/2$ d. $\lambda/4$ 16. A line normal to wave front indicating the direction of motion is called a wave b. ray c. pulse d. none of these 17. The condition for constructive interference of two coherent beams is that the path difference should be a. odd integral multiple of $\lambda/2$ d. integral multiple of $\lambda/4$ 18. The distance between two bright fringes distance between two consecutive dark fringes a. is greater than b. is equal to c. is less than d. has no comparison 19. The appearance of colors in the bubble of soap when sun light falls on it, is due to a. diffraction b. polarization c. interference d. dispersion 20. Bending of light around sharp obstacles is called a. time period b. frequency c. wavelength d. displacement 21. The distance bytwo consecutive wave fronts is called a. diffraction b. interference c. polarization d. refraction 23. The polarizition b. interference c. polarization d. refraction 24. Michelson's interferemet crass bused to measure a. andiffraction b. interference c. polarization d. refraction 25. One angestrom (A) is equal to a start of the due to a. a. diffraction b. 10^{-9} m c. 10^{-12} m d. 10^{-15} m 25. One angestrom (A) is		a. λ b. $\lambda/2$	c. λ/4	d. 2λ
a. selective absorption b. reflection c. refraction d. all of these 14. When sunfight passes through atmosphere, its energy reduces due to a. reflection of dust particles b. scattering by dust particles c. absorption by dust particles d. All of these 15. If mirror M1 in Michelson Interferometer is moved by a distance of $\lambda/4$, then path difference is a. 2λ b. λ c. $\lambda/2$ d. All of these 16. A line normal to wave front indicating the direction of motion is called a. 2λ b. nay c. pulse d. none of these 17. The condition for constructive interference of two coherent beams is that the path difference should be a. odd integral multiple of $\lambda/2$ d. integral multiple of $\lambda/4$ 18. The distance between two bright fringes distance between two consecutive dark fringes a. is greater than b. polarization c. interference d. dispersion 19. The appearance of colors in the bubble of soap when sun light falls on it, is due to a. diffraction b. polarization c. interference d. dispersion <	13.	The polarization of light can be achieved b	y the process of	
14. When sunlight passes through atmosphere, its energy reduces due to a. reflection of dust particles b. scattering by dust particles c. absorption by dust particles d. All of these 15. If mirror M1 in Michelson Interferometer is moved by a distance of $\lambda/4$, then path difference is a. λ b. λ c. $\lambda/2$ d. $\lambda/4$ 16. A line normal to wave front indicating the direction of motion is called a. wave b. n c. $\mu/2$ d. $\lambda/4$ 17. The condition for constructive interference of two coherent beams is that the path difference should be a. odd integral multiple of $\lambda/2$ c. integral multiple of λ c. integral multiple of $\lambda/2$ d. integral multiple of λ e. interference d. dispersion 19. The appearance of colors in the bubble of soap when sun light falls on it, is due to a. diffraction b. polarization c. interference d. dispersion 20. Bending of light around sharp obstacles is called a. diffraction b. interference c. oplarization d. intersity of light d. d		a. selective absorption b. reflection	c. refraction	d. all of these
 a. reflection of dust particles b. scattering by dust particles c. absorption by dust particles d. All of these If mirror M1 in Michelson Interferometer is moved by a distance of λ/4, then path difference is a. 2λ b. λ c. λ/2 d. λ/4 16. A line normal to wave front indicating the direction of motion is called a. wave b. ray c. pulse d. none of these 17. The condition for constructive interference of two coherent beams is that the path difference should be a. odd integral multiple of λ/2 b. integral multiple of λ 18. The distance between two bright fringes d. integral multiple of λ c. integral multiple of λ d. integral multiple of λ 19. The distance between two bright fringes d. integral multiple of λ d. integral multiple of λ 19. The distance between two bright fringes d. is greater than b. is equal to c. interference d. dispersion 19. The distance botween two consecutive wave fronts is called a. diffraction b. polarization c. interference d. displacement 20. Newton's rings are formed due to a. increase intensity of light b. decrease intensity of light d. diord change intensity of light d. none 21. The olariod sun glasses are better than ordinary sun glasses because they a. increase intensity of light b. wavelength of light d. none 23. More for the set in grating element is given by a. 10⁻¹⁰ m b. 10⁻⁹ m c. 10⁻¹² m d. 10⁻¹⁵ m 24. If N is number of lines per meter in grating of length L, its grating element is given by a. N/L b. L/N c. L/N d. 2 N/	14.	When sunlight passes through atmosphere,	its energy reduces due	eto
 15. If mirror M1 in Michelson Interferometer is moved by a distance of λ/4, then path difference is a. 2λ b. λ c. λ/2 d. λ/4 16. A line normal to wave front indicating the direction of motion is called a. wave b. ray c. pulse d. none of these 17. The condition for constructive interference of two coherent beams is that the path difference should be a. odd integral multiple of λ/2 b. integral multiple of λ c. integral multiple of λ/2 d. integral multiple of λ c. integral multiple of λ/2 d. integral multiple of λ c. integral multiple of λ/2 d. integral multiple of λ e. integral multiple of λ c. integral multiple of λ d. integral multiple of λ d. integral multiple of λ e. interference d. dispersion 19. The appearance of colors in the bubble of soap when sun light falls on it, is due to a. diffraction b. polarization c. interference d. dispersion 20. Bending of light around share obstacles is called a. time period b. frequency c. wavelength d. displacement 21. The distance bive two consecutive wave fronts is called a. diffraction b. polarization c. interference c. do not change intensity of light d. displacement 22. Newload sun glasses are better than ordinary sun glasses because they a. increase intensity of light b. decrease intensity of light d. intensity of light 3. 10⁻¹⁰ m b. 10⁻⁹ m c. 10⁻¹² m d. 10⁻¹⁵ m 3. N/L b. L/N c. L/2 N d. 2 N/L 2. Confinement of ight into one plane of vibration is called a. diffraction b. polarization c. 1/2		a. reflection of dust particles b. scatte	ring by dust particles	c. absorption by dust particles d. All of these
a 2λ b λ c. $\lambda/2$ d. $\lambda/4$ 16. A line normal to wave front indicating the direction of motion is called a, wave b. ray c. pulse d. none of these 17. The condition for constructive interference of two coherent beams is that the path difference should be a. odd integral multiple of $\lambda/2$ b. integral multiple of λ c. integral multiple of $\lambda/2$ d. integral multiple of λ c. integral multiple of $\lambda/2$ d. integral multiple of λ c. integral multiple of $\partial/2$ d. integral multiple of λ c. integral multiple of $\partial/2$ d. integral multiple of λ a. is greater than b. is equal to c. is less than d. has no consecutive dark fringes a. is greater than b. polarization c. interference d. dispersion 19. The appearance of colors in the bubble of soap when sun light falls on it, is due to a. diffraction b. polarization c. interference d. dispersion 20. Bending of light around sharp obstacles is called a. diffraction b. polarization c. interference d. dispersion 21. The distance b/w two consecutive wave fronts is called a. time period b. frequency c. wavelength d. displacement 22. Newton's rings are formed due to a. diffraction b. interference c. polarization d. refraction 23. The polaroid sun glasses are better than ordinary sun glasses because they a. increase intensity of light b. decrease intensity of light c. do not change intensity of light d. none 24. Michelson's interferometer can be used to measure a. amplitude of light b. wavelength of light c. speed of light d. intensity of light d. none 25. One angstrom (A) is equal to a. 10^{-10} m b. 10^{-9} m c. 10^{-12} d. 10^{-15} m 26. If N is number of lines per meter in grating of length L, its grating element is given by a. N/L b. L/N c. $L/2N$ d. $2N/L$ 27. Confinement of light into one plane of vibration is called a. diffraction b. polarization c. Interference d. dispersion 28. When one mirror of a Michelson interferometer is move a distance of 05 mm, 2000 fringes are observed, the wavelength of light used is a. 2000 Å b.	15.	If mirror M1 in Michelson Interferometer i	is moved by a distance	of $\lambda/4$, then path difference is
16. A line normal to wave front indicating the direction of motion is called a. wave b. ray c. pulse d. none of these 17. The condition for constructive interference of two coherent beams is that the path difference should be a. odd integral multiple of $\lambda/2$ d. integral multiple of λ c. integral multiple of $\lambda/2$ d. integral multiple of λ t. integral multiple of λ c. integral multiple of $\lambda/2$ d. integral multiple of λ c. integral multiple of $\lambda/2$ d. integral multiple of λ c. integral multiple of $\lambda/2$ d. integral multiple of λ a. is greater than b. is equal to c. is less than d. has no comparison 19. The appearance of colors in the bubble of soap when sun light falls on it, is due to a. diffraction b. polarization c. interference d. dispersion 20. Bending of light around sharp obstacles is called a. time period b. frequency c. wavelength d. displacement 21. The distance b/w two consecutive wave fronts is called a. diffraction b. interference c. polarization d. refraction 23. The polaroid sun glasses are better than ordinary sun glasses because they a. increase intensity of light b. decrease intensity of light c. none 24. Michelson's interferemeter can be used to measure </td <td></td> <td>a. 2 λ b. λ</td> <td>c. λ/2</td> <td>d. λ/4</td>		a. 2 λ b. λ	c. λ/2	d. λ/4
a. wave b. ray c. pulse d. none of these 17. The condition for constructive interference of two coherent beams is that the path difference should be a. odd integral multiple of $\lambda/2$ b. integral multiple of λ c. integral multiple of $\lambda/2$ d. integral multiple of λ 18. The distance between two bright fringes distance between two consecutive dark fringes a. is greater than b. is equal to c. is less than d. has no comparison 19. The appearance of colors in the bubble of soap when sun light falls on it, is due to a. diffraction b. polarization c. interference d. dispersion 20. Bending of light around sharp obstacles is called a. diffraction b. polarization c. interference d. dispersion 21. The distance by two consecutive wave fronts is called a. time period b. frequency c. wavelength d. displacement 22. Newton's rings are formed due to a. diffraction b. interference c. polarization d. refraction 23. The polario distance by two consecutive wave fronts is called a. diffraction b. interference c. polarization d. refraction 24. Michelson's interferometer can be used to measure a. amplitude of light b. decrease intensity of light d. none 24. Michelson's interferometer can be used to measure a. anoplitude of light b. wavelength of light d. intensity of light 25. One angstrom (A) is equal to a. 10^{-10} m b. 10^{-9} m c. 10^{-12} m d. 10^{-15} m 26. If N is number of lines per meter in grating of length L, its grating element is given by a. N/L b. L/N c. $L/2N$ d. $2 N/L$ 27. Confinement of light into one plane of vibration is called a. diffraction b. polarization c. Interference d. dispersion 28. When one mirror of a Michelson interferometer is move a distance of 05 mm, 2000 fringes are observed, the wavelength of light used is a. 2000 Å b. 5000 Å c. 1000 cm d. none of these	16.	A line normal to wave front indicating the	direction of motion is	called
 17. The condition for constructive interference of two coherent beams is that the path difference should be a. odd integral multiple of λ/2 b. integral multiple of λ c. integral multiple of λ/2 d. integral multiple of λ 18. The distance between two bright fringes a. is greater than b. is equal to c. is equal to c. interference d. dispersion 19. The appearance of colors in the bubble of soap when sun light falls on it, is due to a. diffraction b. polarization c. interference d. dispersion 20. Bending of light around sharp obstacles is called a. diffraction b. polarization c. interference d. dispersion 21. The distance b/w two consecutive wave fronts is called a. diffraction b. interference c. polarization c. interference d. displacement 22. Newton's rings are formed due to a. diffraction b. interference c. polarization d. refraction 23. The polaroid sun glasses are better than ordinary sun glasses because they a. increase intensity of light b. decrease intensity of light c. do not change intensity of light d. none 24. Michelson's interferometer can be used to measure a. a. 10⁻¹⁰ m b. 10⁻⁹ m c. 10⁻¹² m d. 10⁻¹⁵ m 25. One angstrom (A) is equal to a. diffraction b. polarization c. Interference d. dispersion 25. One angstrom (A) is equal to a. 10⁻¹⁰ m b. 10⁻⁹ m c. 10⁻¹² m d. 40⁻¹⁵ m 26. If N is number of lines per meter in grating of length L, its grating element is given by a. N/L b. L/N <		a. wave b. ray	c. pulse	d. none of these
 a. odd integral multiple of λ/2 d. integral multiple of λ c. integral multiple of λ/2 d. integral multiple of λ/4 18. The distance between two bright fringes distance between two consecutive dark fringes a. is greater than b. is equal to c. is less than d. has no comparison 19. The appearance of colors in the bubble of soap when sun light falls on it, is due to a. diffraction b. polarization c. interference d. dispersion 20. Bending of light around sharp obstacles is called a. diffraction b. polarization c. interference d. dispersion 21. The distance b/w two consecutive wave fronts is called a. time period b. frequency c. wavelength d. displacement 22. Newton's rings are formed due to a. diffraction b. interference c. polarization d. refraction 23. The polaroid sun glasses are better than ordinary sun glasses because they a. increase intensity of light b. decrease intensity of light c. do not change intensity of light d. none 24. Michelson's interferometer can be used to measure a. amplitude of light b. wavelength of light c. speed of light d. 10^{e15}m 25. One angstrom (A) is equal to a. None of these period b. 10⁻⁹ m c. 10⁻¹² m d. 10^{e15}m 26. If N is number of lines per meter in grating of length L, its grating element is given by a. N/L b. L/N c. L/2N d. 2 N/L 27. Confinement of light into one plane of vibration is called a. diffraction b. polarization c. Interference d. dispersion 28. When one mirror of a Michelson interferometer is move a distance of 05 mm, 2000 fringes are observed, the wavelength of light used is a. 2000 Å b. 5000 Å c. 1000 cm d. none of these 	17.	The condition for constructive interference	of two coherent beam	s is that the path difference should be
c. integral multiple of $\lambda/2$ d. integral multiple of $\lambda/4$ 18. The distance between two bright fringes distance between two consecutive dark fringes a. is greater than b. is equal to c. is less than d. has no comparison 19. The appearance of colors in the bubble of soap when sun light falls on it, is due to a. diffraction b. polarization c. interference d. dispersion 20. Bending of light around sharp obstacles is called a. diffraction b. polarization c. interference d. dispersion 21. The distance b/w two consecutive wave fronts is called a. time period b. frequency c. wavelength d. displacement 22. Newton's rings are formed due to a. diffraction b. interference c. polarization d. refraction 23. The polaroid sun glasses are better than ordinary sun glasses because they a. increase intensity of light b. decrease intensity of light c. do not change intensity of light d. none 24. Michelson's interferometer can be used to measure a. amplitude of light b. wavelength of light c. speed of light d. intensity of light 25. One angstrom (A) is equal to a. N/L b. 10^{-9} c. 10^{-12} d. 10^{-15} m 26. If N is number of lines per meter in grating of length L, its grating element is given by a. N/L b. L/N c. $L/2N$ d. $2 N/L$ 27. Confinement of light into one plane of vibration is called a. diffraction b. polarization c. Interference d. dispersion 28. When one mirror of a Michelson interferometer is move a distance of 05 mm, 2000 fringes are observed, the wavelength of light used is a. 2000 Å b. 5000 Å c. 1000 cm d. none of these Ever proce proce proces of Army. Mays and DAE wisit working by the or (frame of these		a. odd integral multiple of $\lambda/2$	b. integral r	nultiple of λ
18. The distance between two bright fringes distance between two consecutive dark fringes a. is greater than b. is equal to c. is less than d. has no comparison 19. The appearance of colors in the bubble of soap when sun light falls on it, is due to a. diffraction b. polarization c. interference d. dispersion 20. Bending of light around sharp obstacles is called a. diffraction b. polarization c. interference d. dispersion 21. The distance b/w two consecutive wave fronts is called a. time period b. frequency c. wavelength d. displacement 22. Newton's rings are formed due to a. diffraction b. interference c. polarization d. refraction 23. The polaroid sun glasses are better than ordinary sun glasses because they a. increase intensity of light b. decrease intensity of light c. do not change intensity of light d. none 24. Michelson's interferometer can be used to measure a. amplitude of light b. wavelength of light c. speed of light d. intensity of light 25. One angstrom (A) is equal to a. 10^{-10} m b. 10^{-9} m c. 10^{-12} m d. 10^{-15} m 26. If N is number of lines per meter in gratin		c. integral multiple of $\lambda/2$	d. integral m	ultiple of $\lambda/4$
a. is greater thanb. is equal toc. is less thand. has no comparison19.The appearance of colors in the bubble of soap when sun light falls on it, is due to a. diffractionb. polarizationc. interferenced. dispersion20.Bending of light around sharp obstacles is called a. diffractionb. polarizationc. interferenced. dispersion21.The distance b/w two consecutive wave fronts is called a. time periodb. frequencyc. wavelengthd. displacement22.Newton's rings are formed due to a. diffractionb. interferencec. polarizationd. refraction23.The polaroid sun glasses are better than ordinary sun glasses because they a. increase intensity of lightb. decrease intensity of lightc. do not change intensity of lightd. none24.Michelson's interferemeter can be used to measure a. amplitude of lightb. may end to measure c. speed of lightd. intensity of lightd. none25.One angstrom (A) is equal to a. 10 ⁻¹⁰ mb. 10 ⁻⁹ mc. 10 ⁻¹² md. 10 ⁻¹⁵ m26.If N is number of lines per meter in grating of length L, its grating element is given by a. N/Lb. L/Nc. L/2 Nd. 2 N/L27.Confinement of light its one plane of vibration is called a. diffractionb. polarizationc. Interferenced. dispersion28.When one mirror of a Michelson interferometer is move a distance of 05 mm, 2000 fringes are observed, the wavelength of light used is a. 2000 Åb. 5000 Åc. 1000 cmd. none of these	18.	The distance between two bright fringes	distance betw	veen two consecutive dark fringes
 19. The appearance of colors in the bubble of soap when sun light falls on it, is due to a. diffraction b. polarization c. interference d. dispersion 20. Bending of light around sharp obstacles is called a. diffraction b. polarization c. interference d. dispersion 21. The distance b/w two consecutive wave fronts is called a. time period b. frequency c. wavelength d. displacement 22. Newton's rings are formed due to a. diffraction b. interference c. polarization d. refraction 23. The polaroid sun glasses are better than ordinary sun glasses because they a. increase intensity of light b. decrease intensity of light c. do not change intensity of light d. none 24. Michelson's interferometer can be used to measure a. amplitude of light b. wavelength of light c. 10⁻¹² m d. 10⁻¹⁵ m 25. One angstrom (A) is equal to a. 10⁻¹⁰ m b. 10⁻⁹ m c. 10⁻¹² m d. 10⁻¹⁵ m 26. If N is number of lines per meter in grating of length L, its grating element is given by a. N / L b. L / N c. L/2 N d. 2 N / L 27. Confinement of light into one plane of vibration is called a. diffraction b. polarization c. Interference d. dispersion 28. When one mirror of a Michelson interferometer is move a distance of 05 mm, 2000 fringes are observed, the wavelength of light used is a. 2000 Å b. 5000 Å c. 1000 cm d. none of these 		a. is greater than b. is equal to	c. is less than	d. has no comparison
 a. diffraction b. polarization c. interference d. dispersion 20. Bending of light around sharp obstacles is called a. diffraction b. polarization c. interference d. dispersion 21. The distance b/w two consecutive wave fronts is called a. time period b. frequency c. wavelength d. displacement 22. Newton's rings are formed due to a. diffraction b. interference c. polarization d. refraction 23. The polaroid sun glasses are better than ordinary sun glasses because they a. increase intensity of light b. decrease intensity of light c. do not change intensity of light d. none 24. Michelson's interferometer can be used to measure a. amplitude of light b. wavelength of light c. speed of light d. intensity of light 25. One angstrom (A) is equal to a. 10⁻¹⁰ m b. 10⁻⁹ m c. 10⁻¹² m d. 10⁻¹⁵ m 26. If N is number of lines per meter in grating of length L, its grating element is given by a. N/L b. L/N c. L/2N d. 2 N/L 27. Confinement of light into one plane of vibration is called a. diffraction b. polarization c. Interference d. dispersion 28. When one mirror of a Michelson interferometer is move a distance of 05 mm, 2000 fringes are observed, the wavelength of light used is a. 2000 Å b. 5000 Å c. 1000 cm d. none of these 	19.	The appearance of colors in the bubble of s	soap when sun light fal	ls on it, is due to
 20. Bending of light around sharp obstacles is called a. diffraction b. polarization c. interference d. dispersion 21. The distance b/w two consecutive wave fronts is called a. time period b. frequency c. wavelength d. displacement 22. Newton's rings are formed due to a. diffraction b. interference c. polarization d. refraction 23. The polaroid sun glasses are better than ordinary sun glasses because they a. increase intensity of light b. decrease intensity of light c. do not change intensity of light d. none 24. Michelson's interferometer can be used to measure a. amplitude of light b. wavelength of light c. speed of light d. intensity of light 25. One angstrom (A) is equal to a. 10⁻¹⁰ m b. 10⁻⁹ m c. 10⁻¹² m d. 10⁻¹⁵ m 26. If N is number of lines per meter in grating of length L, its grating element is given by a. N/L b. L/N c. L/2N d. 2 N/L 27. Confinement of light into one plane of vibration is called a. diffraction b. polarization c. Interference d. dispersion 28. When one mirror of a Michelson interferometer is move a distance of 05 mm, 2000 fringes are observed, the wavelength of light used is a. 2000 Å b. 5000 Å c. 1000 cm d. none of these 		a. diffraction b. polarization	c. interference	d. dispersion
 a. diffraction b. polarization c. interference d. dispersion 21. The distance b/w two consecutive wave fronts is called a. time period b. frequency c. wavelength d. displacement 22. Newton's rings are formed due to a. diffraction b. interference c. polarization d. refraction 23. The polaroid sun glasses are better than ordinary sun glasses because they a. increase intensity of light b. decrease intensity of light c. do not change intensity of light d. none 24. Michelson's interferometer can be used to measure a. amplitude of light b. wavelength of light c. 10⁻¹² m d. 10⁻¹⁵ m 25. One angstrom (A) is equal to a. 10⁻¹⁰ m b. 10⁻⁹ m c. 10⁻¹² m d. 10⁻¹⁵ m 26. If N is number of lines per meter in grating of length L, its grating element is given by a. N/L b. L/N c. L/2 N d. 2 N/L 27. Confinement of light into one plane of vibration is called a. diffraction b. polarization c. Interference d. dispersion 28. When one mirror of a Michelson interferometer is move a distance of 05 mm, 2000 fringes are observed, the wavelength of light used is a. 2000 Å b. 5000 Å c. 1000 cm d. none of these 	20.	Bending of light around sharp obstacles is	called	
 21. The distance b/w two consecutive wave fronts is called a. time period b. frequency c. wavelength d. displacement 22. Newton's rings are formed due to a. diffraction b. interference c. polarization d. refraction 23. The polaroid sun glasses are better than ordinary sun glasses because they a. increase intensity of light b. decrease intensity of light c. do not change intensity of light d. none 24. Michelson's interferometer can be used to measure a. amplitude of light b. wavelength of light c. speed of light d. intensity of light 25. One angstrom (A) is equal to a. 10⁻¹⁰ m b. 10⁻⁹ m c. 10⁻¹² m d. 10⁻¹⁵ m 26. If N is number of lines per meter in grating of length L, its grating element is given by a. N / L b. L / N c. L/2 N d. 2 N / L 27. Confinement of light into one plane of vibration is called a. diffraction b. polarization c. Interference d. dispersion 28. When one mirror of a Michelson interferometer is move a distance of 05 mm, 2000 fringes are observed, the wavelength of light used is a. 2000 Å b. 5000 Å c. 1000 cm d. none of these 		a. diffraction b. polarization	c. interference	d. dispersion
a. time periodb. frequencyc. wavelengthd. displacement22.Newton's rings are formed due to a. diffractionb. interferencec. polarizationd. refraction23.The polaroid sun glasses are better than ordinary sun glasses because they a. increase intensity of lightb. decrease intensity of lightc. do not change intensity of lightd. none24.Michelson's interferometer can be used to measure a. amplitude of lightb. wavelength of light c. speed of lightd. intensity of lightd. none25.One angstrom (A) is equal to a. 10 ⁻¹⁰ mb. 10 ⁻⁹ mc. 10 ⁻¹² md. 10 ⁻¹⁵ m26.If N is number of lines per meter in grating of length L, its grating element is given by a. N / Lb. L / Nc. L/2 Nd. 2 N / L27.Confinement of light into one plane of vibration is called a. diffractionb. polarizationc. Interferenced. dispersion28.When one mirror of a Michelson interferometer is move a distance of 05 mm, 2000 fringes are observed, the wavelength of light used is a. 2000 Åb. 5000 Åc. 1000 cmd. none of these	21.	The distance b/w two consecutive wave from	onts is called	
 22. Newton's rings are formed due to a. diffraction b. interference c. polarization d. refraction 23. The polaroid sun glasses are better than ordinary sun glasses because they a. increase intensity of light b. decrease intensity of light c. do not change intensity of light d. none 24. Michelson's interferometer can be used to measure a. amplitude of light b. wavelength of light c. speed of light d. intensity of light 25. One angstrom (A) is equal to a. 10⁻¹⁰ m b. 10⁻⁹ m c. 10⁻¹² m d. 10⁻¹⁵ m 26. If N is number of lines per meter in grating of length L, its grating element is given by a. N/L b. L/N c. L/2 N d. 2 N/L 27. Confinement of light into one plane of vibration is called a. diffraction b. polarization c. Interference d. dispersion 28. When one mirror of a Michelson interferometer is move a distance of 05 mm, 2000 fringes are observed, the wavelength of light used is a. 2000 Å b. 5000 Å c. 1000 cm c. none of these 		a. time period b. frequency	c. wavelength	d. displacement
 a. diffraction b. interference c. polarization d. refraction 23. The polaroid sun glasses are better than ordinary sun glasses because they a. increase intensity of light b. decrease intensity of light c. do not change intensity of light d. none 24. Michelson's interferometer can be used to measure a. amplitude of light b. wavelength of light c. speed of light d. intensity of light 25. One angstrom (A) is equal to a. 10⁻¹⁰ m b. 10⁻⁹ m c. 10⁻¹² m d. 10⁻¹⁵ m 26. If N is number of lines per meter in grating of length L, its grating element is given by a. N/L b. L/N c. L/2N d. 2 N/L 27. Confinement of light into one plane of vibration is called a. diffraction b. polarization c. Interference d. dispersion 28. When one mirror of a Michelson interferometer is move a distance of 05 mm, 2000 fringes are observed, the wavelength of light used is a. 2000 Å b. 5000 Å c. 1000 cm c. 1000 cm 	22.	Newton's rings are formed due to		
 23. The polaroid sun glasses are better than ordinary sun glasses because they a. increase intensity of light b. decrease intensity of light c. do not change intensity of light d. none 24. Michelson's interferometer can be used to measure a. amplitude of light b. wavelength of light c. speed of light d. intensity of light 25. One angstrom (A) is equal to a. 10⁻¹⁰ m b. 10⁻⁹ m c. 10⁻¹² m d. 10⁻¹⁵ m 26. If N is number of lines per meter in grating of length L, its grating element is given by a. N/L b. L/N c. L/2 N d. 2 N/L 27. Confinement of light into one plane of vibration is called a. diffraction b. polarization c. Interference d. dispersion 28. When one mirror of a Michelson interferometer is move a distance of 05 mm, 2000 fringes are observed, the wavelength of light used is a. 2000 Å b. 5000 Å c. 1000 cm c. none of these 		a. diffraction b. interference	c. polarization	d. refraction
 a. increase intensity of light b. decrease intensity of light c. do not change intensity of light d. none 24. Michelson's interferometer can be used to measure a. amplitude of light b. wavelength of light c. speed of light d. intensity of light 25. One angstrom (A) is equal to a. 10⁻¹⁰ m b. 10⁻⁹ m c. 10⁻¹² m d. 10⁻¹⁵ m 26. If N is number of lines per meter in grating of length L, its grating element is given by a. N/L b. L/N c. L/2 N d. 2 N/L 27. Confinement of light into one plane of vibration is called a. diffraction b. polarization c. Interference d. dispersion 28. When one mirror of a Michelson interferometer is move a distance of 05 mm, 2000 fringes are observed, the wavelength of light used is a. 2000 Å b. 5000 Å c. 1000 cm d. none of these 	23.	The polaroid sun glasses are better than orc	linary sun glasses beca	use they
 24. Michelson's interferometer can be used to measure a. amplitude of light b. wavelength of light c. speed of light d. intensity of light 25. One angstrom (A) is equal to a. 10⁻¹⁰ m b. 10⁻⁹ m c. 10⁻¹² m d. 10⁻¹⁵ m 26. If N is number of lines per meter in grating of length L, its grating element is given by a. N/L b. L/N c. L/2 N d. 2 N/L 27. Confinement of light into one plane of vibration is called a. diffraction b. polarization c. Interference d. dispersion 28. When one mirror of a Michelson interferometer is move a distance of 05 mm, 2000 fringes are observed, the wavelength of light used is a. 2000 Å b. 5000 Å c. 1000 cm c. none of these 		a. increase intensity of light b. decrease	intensity of light	c.do not change intensity of light d. none
 a. amplitude of light b. wavelength of light c. speed of light d. intensity of light 25. One angstrom (A) is equal to a. 10⁻¹⁰ m b. 10⁻⁹ m c. 10⁻¹² m d. 10⁻¹⁵ m 26. If N is number of lines per meter in grating of length L, its grating element is given by a. N/L b. L/N c. L/2 N d. 2 N/L 27. Confinement of light into one plane of vibration is called a. diffraction b. polarization c. Interference d. dispersion 28. When one mirror of a Michelson interferometer is move a distance of 05 mm, 2000 fringes are observed, the wavelength of light used is a. 2000 Å b. 5000 Å c. 1000 cm d. none of these 	24.	Michelson's interferometer can be used to :	measure	
 25. One angstrom (A) is equal to a. 10⁻¹⁰ m b. 10⁻⁹ m c. 10⁻¹² m d. 10⁻¹⁵ m 26. If N is number of lines per meter in grating of length L, its grating element is given by a. N / L b. L / N c. L / 2 N d. 2 N / L 27. Confinement of light into one plane of vibration is called a. diffraction b. polarization c. Interference d. dispersion 28. When one mirror of a Michelson interferometer is move a distance of 05 mm, 2000 fringes are observed, the wavelength of light used is a. 2000 Å b. 5000 Å c. 1000 cm c. none of these 		a. amplitude of light b. wavelength of lig	ght c. speed of light	d. intensity of light
 a. 10⁻¹⁰ m b. 10⁻⁹ m c. 10⁻¹² m d. 10⁻¹⁵ m 26. If N is number of lines per meter in grating of length L, its grating element is given by a. N/L b. L/N c. L/2 N d. 2 N/L 27. Confinement of light into one plane of vibration is called a. diffraction b. polarization c. Interference d. dispersion 28. When one mirror of a Michelson interferometer is move a distance of 05 mm, 2000 fringes are observed, the wavelength of light used is a. 2000 Å b. 5000 Å c. 1000 cm c. none of these 	25.	One angstrom (A) is equal to		
 26. If N is number of lines per meter in grating of length L, its grating element is given by a. N / L b. L / N c. L/2 N d. 2 N / L 27. Confinement of light into one plane of vibration is called a. diffraction b. polarization c. Interference d. dispersion 28. When one mirror of a Michelson interferometer is move a distance of 05 mm, 2000 fringes are observed, the wavelength of light used is a. 2000 Å b. 5000 Å c. 1000 cm d. none of these 		a. 10⁻¹⁰ m b. 10 ⁻⁹ m	c. 10^{-12} m	d. 10 ⁻¹⁵ m
 a. N/L b. L/N c. L/2 N d. 2 N/L 27. Confinement of light into one plane of vibration is called a. diffraction b. polarization c. Interference d. dispersion 28. When one mirror of a Michelson interferometer is move a distance of 05 mm, 2000 fringes are observed, the wavelength of light used is a. 2000 Å b. 5000 Å c. 1000 cm d. none of these 	26.	If N is number of lines per meter in grating	of length L, its grating	g element is given by
 27. Confinement of light into one plane of vibration is called a. diffraction b. polarization c. Interference d. dispersion 28. When one mirror of a Michelson interferometer is move a distance of 05 mm, 2000 fringes are observed, the wavelength of light used is a. 2000 Å b. 5000 Å c. 1000 cm d. none of these 		a. N / L b. L / N	c. L /2 N	d. 2 N/ L
 a. diffraction b. polarization c. Interference d. dispersion 28. When one mirror of a Michelson interferometer is move a distance of 05 mm, 2000 fringes are observed, the wavelength of light used is a. 2000 Å b. 5000 Å c. 1000 cm d. none of these 	27.	Confinement of light into one plane of vibr	ation is called	
 28. When one mirror of a Michelson interferometer is move a distance of 05 mm, 2000 fringes are observed, the wavelength of light used is a. 2000 Å b. 5000 Å c. 1000 cm d. none of these 		a. diffraction b. polarization	c. Interference	d. dispersion
wavelength of light used is a. $2000 \stackrel{\circ}{A}$ b. $5000 \stackrel{\circ}{A}$ c. 1000 cm d. none of these	28.	When one mirror of a Michelson interferor	neter is move a distanc	e of 05 mm, 2000 fringes are observed, the
a. $2000 \stackrel{\circ}{\text{A}}$ b. $5000 \stackrel{\circ}{\text{A}}$ c. 1000 cm d. none of these		wavelength of light used is		
For more part papers of Army News and DAE visit website, https://www.pakebabaana.com/		a. 2000 Å b. 5000 Å	c. 1000 cm	d. none of these
	For	more past papers of Army Naw a	nd PAF visit webs	ite https://www.pakshaheeps.com/

29.	The blue color of sky	y is due to		
	a. diffraction	b. interference	c. polarization	d. scattering
30.	The effective path di	fference b/w two reflect	cted beams in x-ray diffraction	by nickel crystal is
	a. dsin0	b. 2dsinθ	c. d/2 sin θ	d. $dsin(\theta/2)$
31.	Light reaches from t	he sun to the earth in th	ne form of	
	a. spherical wave fro	ont b. plane wave from	t c. circular wave front	d. cylindrical wave front
32.	The velocity of light	was determined accura	ately by:	
	(a) Newton	(b) Michelson	(c) Huygen	(d) Young
33.	In case of point sour	ce the shape of wave fr	ont is	
	(a) circular	(b) spherical	(c) elliptical	(d) square
34.	The phenomena of in	nterference of light is a		
	a. wave characteris	stics b. Particle cha	aracteristic c. Both wave a	nd particle characteristic d. None
35.	Huygen's principle i	s used to determine the		
	a) Interference of wa	ave fronts	b) Nature of light	
	c) Shape and location	on of new wave front	d) Speed of light	
36.	An oil film floating o	on water surface exhibi	ts beautiful colors due to	
	a) Diffraction	b) Polarization	c) Interference	d) None
37.	Light waves produce	e interference when the	y are	
	a) Monochromatic	b) Coherent	c) Sources are close together	d) All of these
38.	Two wave traveling	in the same direction in	nterfere destructively if their pa	th difference is
	a) mλ	b) $(m + \frac{1}{2}) \lambda$	c) $(m - \frac{1}{2}) \lambda$	d) 2 mλ
39.	Basically young's do	ouble slit experiment ex	hibits	
	a) Diffraction	b) Polarization	c) Reflection	d) Interference
40.	The fringe spacing in	n young's double slit ex	xperiment varies	
	a) Inversely with wa	velength b) Directly w	with 'd' c) Inversely with 'd'	d) Inversely with 'L'
41.	The dark and bright	fringes, in young's dou	ble slit experiment are of	
1.0	a) Variable width	b) Same width	c) Zero width	d) None of these
42.	Which of the follows	ing light is used to incre	ease the fringe spacing?	
10	a) Red light	b) Yellow light	c) Green light	d) Blue light
43.	in Newton's rings, the	b) of the films	vex less and the glass plate is the	d) all film
11	a) glass illin In Michelson interfe	D) all illill	c) light him	
44.	a) companyator plate	b) movable minner	a) talassona	d) fixed mirror
15	Diffraction is promi	nont when the wavelen	of light as compared with a	ize of obstacle is
45.	a) large	b) small	c) very small	d) zero
16	Diffraction of X ray	U) sinan	c) very sman	u) zero
40.	a) greater than	b) less than	c) comparable with	d) much greater than
		b) iess than		a) much greater than
47.	The wavelength of x	-rays incident at Bray a	ingle of 30° on a sodium crysta	If with atomic spacing 2×10^{-10} m for
	the first order reflect	10n 1s	KShaneer	10
	a) 0.5×10 ⁻¹⁰ m	b) 1×10 ⁻¹⁰ m	c) 2×10^{-10} m	d) 3.46×10^{-10} m
48.	Which one of the fol	lowing cannot be polar	rized?	
	a) X-rays	b) light waves	c) sound waves	d) ultraviolet rays
49.	At the point of conta	ct of lens and glass pla	te in Newton's rings, the thickn	ness of air film is
	a. zero	b. 0.1 mm	c. 0.2 mm	d. 0.3 mm
50.	The precision of Mic	chelson interferometer i	İS	
	a. 10 ⁻² mm	b. 10 ⁻³ mm	c. 10 ⁻⁴ mm	d. 10 ⁻⁵ mm

51.	A typical diffraction grating has aboutlines per centimeter.					
	a. 300 to 3000	b. 300 to 4000	c. 400 to 4000	d. 400 to 5000		
52.	X-ray diffraction is useful to find the structure of					
	a. hemoglobin	b. DNA	c. both a & b	d. none of these		
53.	Optical rotation ca	n be done with				
	a. Sugar solution	b. tartaric acid	c. Both a & b	d. HCl		
54.	Light is produced	by oscillating charges.	Light can be polarized when th	is oscillation is confined to		
	a. one plane	b. two planes	c. three planes	d. four planes		
F	or more past pap	pers of Army, Navy	and PAF visit website, h	https://www.pakshaheens.com/		
	Best Note	s for PAF In	itial Tests of Com	missioned Officers		
	20001000					
1	The least distance	of distinct vision for a	normal avaia			
1.	a 25 cm	b 26 om		d 29 am		
r	a. 25 cm When object is he	U. 20 CIII	c. 27 cm	u. 28 cm		
۷.	a at focus point	h away from focus p	oint a between focus point	and contar of our vature d at infinity		
3	The megnifying p	ower of compound mic	vroscopa is	and center of curvature u. at mininty		
5.	The magnifying p	b $a/n(1+d/f_{0})$	$\frac{1}{1 + f_0} = \frac{1}{f_0} + $	d a / p (1 + f / d)		
4	a. $q/p(1+q/1_0)$	D. $\mathbf{q} / \mathbf{p} (1 + \mathbf{u} / 1 \mathbf{e})$	$f = \frac{1}{2} $	$\frac{d}{d} = \frac{1}{2} \left(\frac{1}{1 + 10} + \frac{1}{10} \right)$		
4.		h aqual to		_unan eyepiece		
5	a. less The main part of a	D. Equal to	c. greater	d. none of these		
5.	The main part of s	b talasaona	a turntabla	d all of these		
6	a. commator	D. telescope	brough fiber optics is based up	u. an of these		
0.	diffraction	h polorization	a continuous refroction	d continuous refraction and TIP		
7	The size of fiber of	U. polarization	c. continuous refraction	u. continuous refraction and TIK		
7.	a very large	b large	c small	d very small		
8	The main sources	of loss of data in fiber	ontics are	u. very sman		
0.	a scattering	b absorption	c dispersion	d all of these		
9	The ability of an o	optical instrument to re-	veal minor details is called	u. an of these		
2.	a magnifying pow	ver b refraction	c. resolving nowe	r d magnification		
10	Alexander Grahar	n Bell also invented		di muginitouton		
10.	a. transmitter	b. radio	c. wireless	d. photo-phone		
11.	The diameter of co	ore of multimode grade	ed index fiber is	a pico pico		
	a. 50 to 100 um	b. 50 to 200 um	c. 50 to 500 um	d. 50 to 1000 µm		
12.	Single mode step index fiber carry the information with the help of					
	a. laser light	b. white light	c. blue light	d. x-rays		
13.	When slit is at the focus of the convex lens of collimator in spectrometer, the light rays becomes					
	a perpendicular	h. narallel	c antiparallel	d at 60°		
14.	The length of an a	stronomical telescope	is given by the formula			
	a. fo / fe	b. fe / fo	c. fo - fe	d. $f_0 + f_e$		
15.	Photodiode is used	d convert light signal to)			
	a. electrical signa	l b. sound signal	c. both a & b	d. cannot be used as convertor		
16.	The wavelength o	f light is of the order of	f			
	a. 1 Å	b. 10 Å	c 100 Å	d. 1000 Å		
17.	A convex lens act	s as diverging lens whe	en the object is placed			
	a. at 2f	b. between f and 2	ef c. at f	d. inside focus		
18.	Image formed by	a convex lens of focal	ength 10 cm is twice the size o	f object. The position of object will be		
	a. 20 cm	b. 50 cm	c. 30 cm	d. 15 cm		

19.	When telescope is in	n normal adjustment its lengt	h is given by the formul	a	
	a. $\mathbf{f_0} + \mathbf{f_e}$	b. fo - fe	c. f_0 / f_e	d. fe / fo	
20.	If a convex lens of f	focal length f is cut into two id	dentical halves along th	e lens diameter, focal length of each half is	
	a. 2f	b. f	c. both a & b	d. none of these	
21.	In Michelson's expe	eriment, the equation used to	find the speed of light is	8	
	a. c = 16 f d	b. $c = 16 f / d$	c. $c = 16 d / f$	d. $c = 1 / 16 f d$	
22.	The value of critical	angle for glass-air boundary	is		
	a. 41.8 ⁰	b. 41.5 ⁰	c. 42 ⁰	d. 42.8 ⁰	
23.	The magnifying pov	wer of simple microscope is			
	a. q / p (1+ d / f0)	b. (1+d/f)	c. q / p (1+ fe / f0)	d. q / p (1+ f0 / d)	
24.	In a compound mice	coscope, the focal length of ey	vepiece is that	n objective	
	a. less	b. equal to	c. greater	d. none of these	
25.	The part of the spec	trometer which makes the lig	ht rays parallel is called		
	a. collimator	b. telescope	c. turntable	d. all of these	
26.	A convex lens gives	s virtual image only when obj	ect is placed		
	a. at focus b. be	tween focus and centre of cu	irvature c. inside focu	s d. away from centre of curvature	
27.	An object is placed	at a distance of 2 m from a co	onvex lens of focal leng	th 2.5 m. its image will be	
	a. real and erect	b. virtual and magnified	c. real and magnific	ed d. real and inverted	
28.	Cladding in the fibe	r optics is used			
	a. to absorb light	b. for T.I.R (total interna	al Ref.) c. for disp	ersion d. to transmit light	
29.	Least distance of di	stinct vision	, 1		
	a. increases with in	crease of age	b. deceases with inc	crease of	
	c. measures refracti	ve index of material	d. all of these		
30.	In optical fiber com	munication system, the wave	length of light used is		
	a. 1.3 µm	b. 1.5 μm	c. 5 µm	d. 50 μm	
31.	The final image for	med by simple microscope is			
	a. virtual & inverte	d b. virtual & erect	c. real & erect	d. real & inverted	
32.	The magnifying pov	wer of a convex lens of focal 1	length 10 cm is		
	a. 7	b. 9.6	c. 11	d. 3.5	
33.	The diameter of cor	e of single mode strep index f	fiber is		
	a. 5 µ m	b. 10 μ m	c. 30 μ m	d. 100 μ m	
34.	Microphone is used	convert sound signal into			
	a. electrical signal	b. light	c. both a & b	d. cannot be used as convertor	
35.	A single convex len	s is placed close to eye, then i	it is being used as		
	a. telescope	b. microscope	c. magnifying glas	s d. none of these	
36.	Fiber optic cable ca	rries data in the form of			
	a. electrical signal	b. sound signal	c. light	d. heat	
37.	A point inside the le	ns through which a light ray o	does not deviate is calle	d	
	a. pole	b. focus point	c. centre of curvatu	re d. optical centre	
38.	When light passes fi	om denser medium to rare me	edium		
	a. it bends away from normal b. it bends towards normal c. it does not bend d. diffracted				
39.	The optical fibers ar	e of			
	a. two types	b. three types	c. four types	d. five types	
40.	Which is the optical	instrument	¥ 1	••	
	a. telescope	b. microscope	c. spectrometer	d. all of these	
41.	The layer over the c	entral core of fiber optics is c	alled		
	a. jacket	b. cladding	c. plastic	d. rubber	

42.	The angle subtend	ed by an object at the eye is	called		
	a. Visual angle	b. Critical angle	c. Polarizing angle	d. None	
43.	In normal adjustm	ent, distance between object	ive and eyepiece of Astron	omical Telescope is equal to	
	a. Focal length of	objective	b. Length of telesco	ope	
	c. Magnifying pov	ver of telescope	d. Aperture of object	tive	
44.	The speed of light	in other materials as compar	ed to vacuum		
	a. Greater	b. Lesser	c. Equal	d. Zero	
45.	The ratio of speed	of light in vacuum to the spe	ed of light in certain mate	rial is called	
	a. Wavelength	b. Refractive Index	c. Snell's law	d. T.I.R.	
46.	Which source of li	ight is used by multimode gra	aded index fiber?		
	a. Monochromatic	b. Laser	c. White light	d. Ultraviolet light	
47.	Which of the follo	wing is true for cladding?			
	a. It absorbs unwa	nted light b. It transmits t	he light c. It produce	s T.I.R. d. It scatters light	
48.	The minimum ang	gle subtended by two point so	purces (α_{min}) at the instru	ment will be greater if	
	a. diameter of lens	is greater b. diameter of b	lens is smaller c. wavelen	gth of light is small d. All	
49.	The speed of light	was measured correctly by .			
	(a) Galileo	(b) Michelson	(c) Newton	(d) Maxwell	
50.	The device used to	study the spectra from diffe	rent sources of light is		
	(a) telescope	(b) optical fiber	(c) spectrometer	(d) microscope	
51.	A fiber optics com	munication system consists	of		
	a. a transmitter	b. an optical fiber	c. a receiver	d. all of these	
52.	Which is the principle of communication for single mode step index fiber?				
	a. T.I.R	b. continuous refraction	c. reflection	d. transmission	
53.	Which of the follo	wing is necessary to increase	e the resolving power of a	microscope?	
	a. a wider objectiv	b. light of shorter wave	elength c. both a & b	d. x-rays	
54.	If N is no. of ruled	l lines in the grating and m is	the order of diffraction, the	hen resolving power can be given by	
	a. R= N x m	b. R= N / m	c. $R=m / N$	d. R= N + m	
55.	If focal length is 5	cm the power of lens is			
	a. 5 D	b. 10 D	c. 15 D	d. 20 D	
56.	An astronomical t	elescope is made with the ob	jective of focal length 100	cm and eye piece of focal length is 5	
	cm the length of to	elescope when focused or init	finity is		
	a. 20 cm	b. 95 cm	c. 100 cm	d. 105 cm	
57.	The refractive ind	ex of water is 1.33, the speed	l of light in water is		
	a. 3×10^8 m/s	$b \ 1.5 \times 10^8 \text{ m/s}$	c. 2.8x10 ⁸ m/s	d zero	
58	In the newer syste	m of fiber optics, signals are	regenerated by placing reg	peaters which may be repeated as	
20.	much as	in of noor opices, signals are	regenerated by pracing rej	peners, which hay be repeated as	
	a. 30 km	b. 50 km	c. 100 km	d. 500 km	
			C. AUV MAI		

1.	Carnot cycle is			
	a. reversible	b. irreversible	c. both a & b	d. none of these
2.	Isothermal process is carried	out at constant		
	a. volume	b. pressure	c. temperature	d. entropy
3.	In reversible process, the entry	ropy of the system		
	a. decreases	b. increases	c. remains constant	d. initially increases
4.	The efficiency of Carnot eng	ine depends upon		
	a. sink temp.	b. source temp.	c. both a & b	d. working substance
5.	The Boltzmann constant k is	equal to		
	a. RNA	b. R/NA	c. NA / R	d. 1/RNA
6.	The efficiency of petrol engin	ne is		
	a. 25% to 30 %	b. 30% to 35 %	c. 35% to 40 %	d. 20% to 30%
7.	The mass of gas is doubled a	t constant temperature	then density of the gas become	es
	a. double	b. half	c. one forth	d. unchanged
8.	The value of γ for diatomic g	ases is		
	a. 1.67	b. 1.40	c. 1.29	d. zero
9.	The process in which entropy	of the system remains	s constant is called	
	a. adiabatic process	b. isothermal proces	ssc. isochoric process	d. isobaric process
10.	Heat engine converts heat en	ergy into		
	a. electrical energy	b. sound energy	c. mechanical energy	d. light energy
11.	Which is not an example of a	diabatic process?		
	a. rapid escape of air from bu	rst tyre	b. rapid expansion of air	
	c. conversion of water into	ice	d. cloud formation	
12.	A bicycle pump provides a g	ood example of	law of thermodynamic	s
	a. first	b. second	c. both a & b	d. zero th
13.	The pressure exerted by the g	gas on the walls of vess	sel is directly proportional to	
	a. avg. translational K.E	b. avg. rotational K.E	c. P.E.	d. avg. vibrational K.E.
14.	The internal energy of the ga	s molecules is equal to		
	a. kinetic energy	b. potential energy	c. both a & b	d. none of these
15.	The form of first law of therm	nodynamics for adiaba	tic process will be	
	a. Q = W	b. Q = -W	c. $W = -\Delta U$	d. $W = \Delta U$
16.	The S.I unit of entropy is			
	a. J K	b. J/K	c. K/J	d. J/mol
17.	In an isothermal process, firs	t law can be written as		
	a. $Q = \Delta U + W$	b. $\mathbf{Q} = \Delta \mathbf{U}$	c. Q =0	d. $Q = W$
18.	In a thermodynamics proces	s, the equation $\mathbf{Q} = \Delta \mathbf{U}$	represents	
	a. isothermal process	b. adiabatic process	c. volume is constant	d. none of these
19.	When temperature of source	and sink of a heat engi	ne become equal, the entropy of	change will be
	a. Zero	b. maximum	c. minimum	d. negative
20.	The efficiency of diesel engin	ne is about		
	a. 25% to 30 %	b. 30% to 35 %	c. 35% to 40 %	d. 20% to 30%
21.	During melting of ice, the en	tropy of the system		
	a. increases	b. decreases	c. remains constant	d. becomes zero

22.	Heat is form of					
	a. power	b. work	c. energy	d. momentum		
23.	Pressure of a gas is due to tr	ansfer of	to the walls of the vessel.			
	a. energy per second b. work per second		c. momentum per second	d. all of these		
24.	The property of molecules of	of a gas which is same	for all gasses at a particular ten	nperature is		
	a. momentum	b. velocity	c. mass	d. kinetic energy		
25.	When pressure is increased, the boiling point of the liquid					
	a. decreases	b. increases	c. remains same	d. becomes zero		
26.	The volume of given mass of gas is doubled at constant temperature then density of the gas becomes					
	a. double	b. half	c. one forth	d. unchanged		
27.	The heat required to raise th	e temperature of one k	g of a substance through one K	elvin is called		
	a. heat of vaporization	b. specific heat	c. heat of fusion	d. molar specific heat		
28.	The molar specific heat of a	gas at constant pressur	re is than molar spec	ific heat of at constant volume		
	a. greater	b. less	c. same	d. none of these		
29.	For proper working of a hea	t engine, we require				
	a. hot body	b. cold body	c. both a & b	d. nobody is required		
30.	In process, the er	ntropy of the system rer	nains constant			
	a. isothermal	b. adiabatic	c. isochoric	d. isobaric		
31.	The triple point of the water	is equal to				
	a. Zero degree	b. 273.16 K	c. both a & b	d. 373 K		
32.	The working cycle of typica	l petrol engine consist	of			
	a. two strokes	b. three strokes	c. four strokes	d. eight strokes		
33.	The highest efficiency of a heat engine whose lower temperature is at 17°C and higher temperature or					
	200 ^o C is a 70%	b. 60%	c. 38%	d 35%		
34	Propagation of sound waves	in air follows				
51.	a isothermal process	h. adiabatic process	c isochoric process	d isobaric process		
35	At constant temperature if t	he density of the gas is	increased its pressure will			
55.	a decrease	h increase	c remains same	d none of these		
36	Pressure exerted on the wall	s of container of gas is	equal to	a. none of these		
50.	a change in momentum	h change in K E	c change of mass	d change of P F		
37	For an ideal gas system the	internal energy is direc	tly proportional to			
57.	a pressure	h density	c volume	d. temperature		
38	If the temperature of sink is	decreased the efficient	cy of a Carnot engine	ar temperature		
50.	a remains same	h. increases	c decreases	d none of these		
39	Area under PV graph of Car	not engine represents f	he	a. none of these		
57.	a heat absorbed	h heat rejected	c total work done	d all of these		
40	The motion of molecules of	gas contained in contai	ner is	d. un of these		
10.	a orderly	h random	c circular	d projectile		
41	A hot iron ball is dropped in	to a jar of cold water t	he entropy of the water	d. projectile		
11.	a increases	h decreases	c remains same d first	st increase and then decreases		
12	Net change in entropy of a s	vstem in a Carnot cycle	e ic	st merease and then decreases		
72.	a positive	h negative	c maximum	d zero		
10			v. muzimum	u, 2010		
43.	when water is heated from 0° C to 4° C, then					
	a. $Cp > Cv$	b. $Cp < Cv$	c. $Cp = Cv$	d. $Cp + Cv = R$		
44.	The readings of temperature on centigrade scale and Fahrenneit scale become equal is					
	a273 ^o C	b. 273 ^o C	c40 °C	d. 0 ⁰ C		

45.	S.I unit of temperature i	S				
	a. ampere	b. kelvin	c. Celsius	d. Fahrenheit		
46.	In an irreversible process, entropy of the system					
	a. remains same	b. increases	c. decreases	d. may increase or decrease		
47.	The graph between V ar	nd T at constant pressure	is			
	a. circle	b. parabola	c. hyperbola	d. straight line		
48.	At thermal equilibrium	the entropy of the system	will be			
	a. minimum	b. maximum	c. zero	d. constant		
49.	The amount of heat requ	aired to melt one kg of ice	e at 0°C is called			
	a. heat of vaporization	b. specific heat	c. latent heat of fusio	n d. molar specific heat		
50.	At constant temperature	, if volume of given gas i	s doubled then density of t	the gas becomes		
	a. double	b. ¼ of original	c. ½ of original	d. unchanged		
51.	Boyle's law applies to	process				
	a. isothermal	b. adiabatic	c. isochoric	d. isobaric		
52.	Average K.E. of molecu	Average K.E. of molecules of a gas gives us				
	a. heat	b. temperature	c. entropy	d. internal energy		
53.	The entropy of the unive	erse always				
	a. increases	b. decreases	c. remains zero	d. remains constant		
54.	The diesel engine does i	not have				
	a. piston	b. spark plug	c. inlet valve	d. outlet valve		
55.	In petrol engine ignition, to the compressed mixture of fuel and air, is given by					
	a. high friction	b. spark plug	c. temp. of hot body	d. all of these		
56.	Efficiency of heat engin	e depends upon				
	a. temp. of source	b. temp. of sink c. di	fference of temp. of sour	ce and sink d. none of these		
57.	When gas is compressed	d at constant volume, the	work done on the system i	s second s		
	a. Maximum	b. minimum	c. zero	d. positive		